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This paper presents the practical theory that was used to implement the Zeeman effect
using Stokes formalism in the Atmospheric Radiative Transfer Simulator (ARTS). ARTS
now treats the Zeeman effect in a general manner for several gas species for all
polarizations and takes into account variations in both magnetic and atmospheric fields
along a full 3D geometry. We present how Zeeman splitting affects polarization in
radiative transfer simulations and find that the effect may be large in Earth settings for
polarized receivers in limb observing geometry. We find that not taking a spatially varying
magnetic field into account can result in absolute errors in the measurement vector of at
least 10 K in Earth magnetic field settings. The paper also presents qualitative tests for O2

lines against previous models (61.15 GHz line) and satellite data from Odin-SMR
(487.25 GHz line), and the overall consistency between previous models, satellite data,
and the new ARTS Zeeman module seems encouraging.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The Zeeman effect [1] occurs when an external mag-
netic field interacts with a molecule or an atom of total
electron spin different from zero. Such an interaction will
split an original energy level into several sub-levels [2].
One molecule in the atmosphere of Earth with total
electron spin different from zero is O2 for which the
Zeeman effect plays a crucial role in radiative transfer in
All rights reserved.

son),
lmers.se
the microwave region at lower pressures [3]. Simplistically,
the Zeeman effect can be regarded as several lines shifted
from a central frequency with lines polarized in a quasi-
symmetric manner around that central frequency. When
line broadening parameters are much larger than the
frequency shift, Zeeman affected radiative transfer may
be physically indistinguishable from non-Zeeman affected
radiative transfer. For an early review on the quantum
physics of the problem see Hill [4], for a more recent
review see Schadee [5] and for a detailed textbook
discussion see, e.g., Berestetskii et al. [6] in the Landau
and Lifshitz series on theoretical physics. For instructions
on determining important parameters for the Zeeman
effect see, e.g., Veseth [7] and Christensen and Veseth [8].

There are (at least) two different approaches for polar-
ized radiative transfer simulations. We will call these the
coherency formalism and the Stokes formalism, and we
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refer to Appendix A for a short description of these. Lenoir
[2,3] was the first to describe the Zeeman effect on
radiative transfer for O2 microwave lines using coherency
formalism for the atmosphere of Earth. Lenoir's approach
has been incorporated into models by Rosenkranz and
Staelin [9], Hufford and Liebe [10], Pardo et al. [11], von
Engeln [12], Schwartz et al. [13], and Han et al. [14], usually
to make temperature retrieval for specific instruments
possible. Except for von Engeln [12], all of these authors
seem to consider the magnetic field as constant in strength
and direction throughout the propagation path (a mag-
netic vector rather than the full magnetic field).

There are data available from instruments with suffi-
cient microwave spectral resolution to observe the Zee-
man effect in the atmosphere of Earth for various O2 lines.
Such data have been gathered by, e.g., MLS [13], Odin-SMR
[15], and MAS [16,12].

The solar physics community does Zeeman affected
radiative transfer using Stokes formalism. Such works
include Rees et al. [17] and Berdyugina and Solanki [18].
The solar physics community uses the Zeeman effect to
measure the magnetic field of stars. These measurements
are usually done at shorter wavelengths and therefore for
a different set of molecules and atoms than those usually
considered in radiative transfer in planetary atmospheric
sciences.

The Atmospheric Radiative Transfer Simulator (ARTS)
[19,20] handles microwave radiative transfer in any atmo-
spheric and weak magnetic field. ARTS operates using
Stokes formalism, can operate in full 3D and run simula-
tions on various planets in the solar system. Polarization in
the model was previously mainly a product of the ice cloud
and surface scattering modules [21,22]. All molecular
absorption/emission were assumed to be scalar before
the addition of the Zeeman module. Now the Zeeman
module may also be used to model the polarized radiative
transfer in ARTS. ARTS can be found at http://www.sat.ltu.
se/arts/ and it is both free of cost and open-source.

We will in this paper describe the implementation of
the Zeeman effect in ARTS. This will be done by providing
the practical theory of the Zeeman effect using Stokes
formalism in Section 2. We will show examples of how
ARTS handles O2 lines in the mesosphere of Earth in
Section 3 as well as compare our model with previous
models and data. Section 4 contains a short discussion on
the results of Section 3, an outlook on what we plan to do
with the newly implemented Zeeman module in the
future and a short conclusion.

2. Theory

2.1. Introduction

The radiative transfer equation in local thermodynamic
equilibriumwithout scattering is (see, e.g., [23–25] or [26])

d I
!

ds
¼ �K I

!� B
!� �

; ð1Þ

where I
!¼ ½I;Q ;U;V �T is the Stokes measurement vector

as defined by, e.g., Eriksson et al. [20], s is the path, K is the
propagation matrix and B

!
is the source function, usually
½B;0;0;0�T with B as the Planck function. Note that other
terms are in use in the literature to describe K. These
include, e.g., extinction matrix and absorption matrix. The
propagation matrix for a single line of a single species due
to attenuation without the Zeeman effect is simply
KJ′;J″;N′;N″i ¼ αJ′;J″;N′;N″;iI, where I is the unity matrix,
αJ′;J″;N′;N″;i is the line absorption coefficient, J is the total
angular momentum quantum number, N is the total
angular momentum number without spin, single prime
denotes the upper level, double prime denotes the lower
level of the line transition and i is the species. The
absorption coefficient for a single line of a single species
can be calculated from

αJ′;J″;N′;N″;iðνÞ ¼ niSJ′;J″;N′;N″F′ðνÞ; ð2Þ
where ni is the molecular number density of molecule i in
the atmosphere, SJ′;J″;N′;N″ is the line strength of the J′-J″
and N′-N″ transitions, F′ is some line shape function and
ν is the frequency.

2.2. Introducing the Zeeman effect

The equation for the propagation matrix for one J′-J″
and N′-N″ line using Stokes formalism in a Zeeman
affected case will be

KJ′;J″;N′;N″;iðνÞ ¼KAðνÞþKBðνÞ; ð3Þ
where

KA νð Þ ¼ ni

2
SJ′;J″;N′;N″ ∑

M;ΔM
SM′;M″FA ν; ν0þΔν0ð ÞΦA
� � ð4Þ

is due to attenuation and

KBðνÞ ¼ niSJ′;J″;N′;N″ ∑
M;ΔM

½SM′;M″FBðν; ν0þΔν0ÞΦB� ð5Þ

is due to what is called the magneto-optic effect. The
terms in the propagation matrix are cumulative, such that
for all species and allowed transitions

KðνÞ ¼∑
i

∑
J;ΔJ;N;ΔN

KJ′;J″;N′;N″;iðνÞ: ð6Þ

In Eqs. (4) and (5), SM′;M″ is the relative line strength of the

Zeeman sub-levels, M is the projection of J
!

on the
magnetic field, FA=B are line shape functions, ν0 is the
frequency of the non-Zeeman affected line center, Δν0 is
the frequency shift due to the Zeeman effect, and ΦA=B are
the polarization rotation matrices using Stokes formalism.
The sub-indices A and B stand for the attenuation and the
magneto-optic effect respectively. The factor 1

2, in Eq. (4), is
by the convention that

∑
M;ΔM

SM′;M″ � 1; det ∑
M;ΔM

ΦA

 !
� 2;det ∑

M;ΔM
ΦB

 !
� 0: ð7Þ

The frequency shift, the relative line strength, the polar-
ization rotation matrices and the line shapes will be
discussed in Sections 2.3, 2.4, 2.5 and 2.6, respectively.

There are discrete molecular energy levels associated
with the combination of quantum numbers J, N and M.
A transition between two such sets of numbers emits or
absorbs radiation with the difference in energy between
these levels. Various nomenclature are used in the
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Fig. 1. An example of a Zeeman affected transition that is similar to the
transition of the strong O2 118.75 GHz line. Note that ΔM is along H

!
as

shown by M being a projection of J
!

on H
!

in the figure—the implications
of this directionality and how it affects polarization is discussed in the
text and is also shown in Fig. 3.

Table 1
Molecular gs-factors for Eq. (9).

Molecule S gs-Constant Source

O2 1 2.002064 Christensen and Veseth [8]
SO 1 2.002106 Christensen and Veseth [8]
OH 1

2
2.00089 Veseth [7]

SH 1
2

2.00089 Veseth [7]

NO 1
2

2.00071 Veseth [7]

NS 1
2

2.00096 Veseth [7]

ClO 1
2

2.00072 Veseth [7]

Table 2
Table of relative strength, SM′;M″ , for the allowed Zeeman sub-levels
[5,18].

ΔJ π s7

þ1 3½ðJþ1Þ2�M2�
2ðJþ1Þð2Jþ1Þð2Jþ3Þ

3ðJþ17MÞðJþ27MÞ
4ðJþ1Þð2Jþ1Þð2Jþ3Þ

0 3M2

JðJþ1Þð2Jþ1Þ
3ðJ8MÞðJþ17MÞ
2JðJþ1Þð2Jþ1Þ

�1 3½J2�M2�
2Jð2J�1Þð2Jþ1Þ

3ðJ8MÞðJ�18MÞ
4Jð2J�1Þð2Jþ1Þ
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literature for the allowed types of transitions. For
ΔJ ¼ 1;0; �1, Lenior [3] use NΔJ whereas the spectroscopic
community seems to use R, Q and P [5]. We will simply use
ΔJ when the change of J demands reference. For
ΔM¼ 0; 71 there seems to be only one accepted notation
with π representing ΔM¼ 0 and s7 representing
ΔM¼ 71. We will conform to this notation system. The
angular momentum quantum number J is limited to
jN�Sjr JrNþS [6], where S is the total electron spin
quantum number.
The projection of the total angular momentum J

!
on the

local magnetic field vector H
!

can take the form
M¼ � J;1� J; ð⋯Þ; J�1; J [3]. Transitions of the types
ΔJ ¼ 0; 71 and ΔM¼ 0; 71 are the only allowed transi-
tions, though there exists an exception for the special case
of ΔM¼ΔJ ¼M¼ 0 that is not allowed [6]. An illustration
of an example transition is given in Fig. 1 showing the
allowed ΔM sub-levels.

In practice, databases like, e.g., HITRAN [27,28], AFGL-86
[29] and IGRF-11 [30] can be consulted to find the para-
meters necessary to describe the Zeeman effect.

2.3. Frequency shift

Zeeman splitting refers to the shift in the upper and
lower energy levels due to the external magnetic field
interacting with the molecule. The energy shift of a level is

ΔE¼ �gMHμb; ð8Þ
where H is the magnitude of the local magnetic field, μb is
the Bohr magneton and g is the Landé factor [6]. According
to Lenior [3] the factor g is

g¼ gs
JðJþ1ÞþSðSþ1Þ�NðNþ1Þ

2JðJþ1Þ ; ð9Þ

where gs is a particle dependent constant. Lenior [3] used
gs � 2:00232, the value for a free electron. It might be
helpful to not use this simplification. See Table 1 for
constants of gs that take relativistic effects and coupling
between the spin and the electrons angular momentum
into account. We will note here that the difference in gs
only becomes important for sensors with a very high
frequency resolution (i.e. a few kilohertz for Earth
conditions).

Since J is N for cases when S¼0, following Eq. (8) it is
clear that the Zeeman effect only occurs for molecules
with Sa0. It is important to note that Eq. (8) for the level
J¼0 is reduced to ΔE¼ 0 but that there is still Zeeman
splitting if the other level has ΔEa0.

To get the Zeeman affected frequency shift, we have to
compute the difference between the change of energy in
the upper and lower levels. In other words, we use

Δν0 ¼
Hμ0
h

g′M′�g″M″ð Þ ð10Þ

to calculate the frequency shift of each Zeeman sub-level,
where h is the Planck constant [6]. Prime and double
prime denote the upper and lower level quantum numbers
respectively.
2.4. Relative line strength

The relative line strength, SM′;M″, of the Zeeman sub-
levels is found in Schadee [5] but are here renormalized as
in Berestetskii et al. [6]. The equations for the relative line
strength depending on ΔJ and ΔM can be found in Table 2.
We would also like to point out that the relative line
strengths of Table 2 agree with Lenior [3] for the special
cases presented therein. An example of the relative fre-
quency shift versus the relative line strength for the
Zeeman sub-levels can be found in Fig. 2.



Fig. 2. Representation of normalized relative line strength versus relative
frequency shift for three different O2 transitions. (These are the transitions
used for radiative transfer in Figs. 4–7, in the upper panel ν0 � 118:75 GHz,
in the middle panel ν0 � 61:15 GHz line, and in the lower panel
ν0 � 487:25 GHz.) Note that the relative line strength is normalized per
transition but that frequency shift is relative to the largest split of the three
examples. We see that the transition with ΔNa0 (lowest panel) has the
largest split. We further see that the transition with ΔNa0 and larger J
(middle panel) has a larger range of frequency shifts for its sub-levels than
the transition with ΔNa0 and lower J (upper panel), but that the
individual sub-levels are also farther apart for the latter.
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According to Berestetskii et al. [6], π and s7 each
account for half of the relative line strength. For this
normalization to be consistent with Eqs. (4) and (5) the π
component therefore carry a factor of 3 in Table 2, whereas
the s7 components carry a factor of 3

2 in Table 2. That the
factor is twice as large as for the π component than for the
s7 components can, in a simplified manner, be viewed as
a geometric property.
2.5. Polarization rotation

The polarization induced by the Zeeman effect may be
understood from the example of a local magnetic field
oriented 901 to the propagation path. Since M is the
projection of J

!
on H

!
, it makes intuitive sense that sub-

levels that involve a change in the angular momentum M
are associated with linearly polarized radiation in the
direction of H

!
, and this is indeed the case. As stated in

Section 2.4, these sub-levels will account for half of the
total transition strength. The other half of the power of the
transition does not change the angular momentum M
along H

!
and must by the same reasoning therefore be

linearly polarized orthogonal to H
!

.
It is equally intuitively understandable that sub-levels

with a changing M will result in circular polarization in
radiative transfer when H

!
is tilted along the propagation

direction vector R
!

. In the example of R
!

fully along H
!

the
entire angular momentum change, ΔM, must still be
carried by the transition, which means that photons
carrying a rotation vector along R

!
will be affected. Since

we observe this radiation with a sensor element directed
towards � R

!
, the transition will result in circular
polarization in the same right handed system as ΔM.
Consequently, we will observe no distinct linear
polarization.

When we allow for all possible orientations of H
!

relative to R
!

, the problem needs a more detailed math-
ematical treatment. If we define the angle between H

!
and

R
!

as θ and the clockwise angle between the vertical
polarization direction of the antenna and the projection
of H

!
on the plane of R

!
as η, it has been shown by, e.g.,

Rees et al. [17] and Jefferies et al. [31] that

ΦAs7
¼

1þ cos 2 θ cos ð2ηÞ sin 2 θ sin ð2ηÞ sin 2 θ 82 cos θ

cos ð2ηÞ sin 2 θ 1þ cos 2 θ 0 0

sin ð2ηÞ sin 2 θ 0 1þ cos 2 θ 0
82 cos θ 0 0 1þ cos 2 θ

2
66664

3
77775

ð11Þ
and

ΦAπ
¼

sin 2 θ � cos ð2ηÞ sin 2 θ � sin ð2ηÞ sin 2 θ 0

� cos ð2ηÞ sin 2 θ sin 2 θ 0 0

� sin ð2ηÞ sin 2 θ 0 sin 2 θ 0

0 0 0 sin 2 θ

2
66664

3
77775

ð12Þ
describe the attenuating polarization rotation matrix of Eq.
(4) that can change all of the Stokes vector components,
and that

ΦBs7 ¼

0 0 0 0
0 0 82 cos θ sin ð2ηÞ sin 2 θ

0 72 cos θ 0 � cos ð2ηÞ sin 2 θ

0 � sin ð2ηÞ sin 2 θ cos ð2ηÞ sin 2 θ 0

2
66664

3
77775

ð13Þ
and

ΦBπ ¼

0 0 0 0
0 0 0 � sin ð2ηÞ sin 2 θ

0 0 0 cos ð2ηÞ sin 2 θ

0 sin ð2ηÞ sin 2 θ � cos ð2ηÞ sin 2 θ 0

2
66664

3
77775

ð14Þ
describe the magneto-optic polarization rotation matrix of
Eq. (5) that can only affect the last three of the Stokes
vector components. See Fig. 3 for a simple visualization
of the polarization vectors and propagation direction

vector R
!

.
Note that the polarization rotation matrix dependencies in

ΦA=B ¼

AI AQ AU AV

AQ AI BV BU

AU �BV AI �BQ

AV �BU BQ AI

2
66664

3
77775 ð15Þ

show the contribution to the polarization rotation matrix
due to the attenuation ðAÞ and the magneto-optic effect ðBÞ,
with the indices representing the main contributing Stokes
parameter. Eqs. (11) and (12) agree with our intuitive
description above, and Eqs. (13) and (14) will rotate the
polarization. The latter point is important to explain why,
e.g., BV, which only affects linear polarization, is said to be
from V, which is the circular polarization parameter of the
Stokes vector. BV is strongest when R

!
is along 7 H

!
, which

cancels all other magneto-optic effects and implies that



Fig. 3. Geometry of the propagation, the local magnetic field and
polarization axes. All vectors in the plot are of the same length.
Specifically, êv is the vertical polarization axis of the sensor, ê ′v is the
vertical polarization axis along the magnetic field Ĥ in the plane of the
direction of propagation R̂ , êh is the horizontal polarization axis of the
sensor, ê ′h is the horizontal polarization axis perpendicular to Ĥ in the
plane of R̂ , θ is the angle between Ĥ and R̂ , and η is the clockwise angle
between ê ′v and êv (or between ê ′h and êh). Note that êv , ê

′
v , êh and ê ′h are

always in the plane of R̂ . Also note that ê ′v , R̂ and Ĥ are always in the
plane of ê ′h . The angles θ and η are important for the polarization rotation
matrices described by Eqs. (11)–(14).
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the medium acts like a Faraday rotator by allowing one
type of circular polarization to traverse the medium faster
than the other, causing a phase delay that in turn rotates
the linear polarization. Similar phase delays exist for
linear polarization, as can be understood from BQ and BU.
We offer our own derivation of the polarization matrix for
both the attenuation and the magneto-optic effect in
Appendix A.
1 Reimplemented in Cþþ by Steven G. Johnson under the MIT
License (attainable through http://ab-initio.mit.edu/Faddeeva).
2.6. Line shape

It is conventional to define the line shape functions
FA=Bðν; ν0þΔν0Þ � FA=Bðν′; aÞ, where

ν′¼ ν0þΔν0�ν

ΔνD
ð16Þ

represents the frequency difference from the line center in
units of Doppler broadening width (ΔνD) and

a¼ γ

4πΔνD
ð17Þ

represents the ratio between pressure broadening width
(γ) and Doppler broadening width. From, e.g., Jefferies
et al. [31] and Landi Degl’innocenti [32] we find a devel-
oped and an applied theory on the line shapes of the
attenuation and the magneto-optic effect. Following their
examples, the line shape of attenuation around the central
frequency is the Voigt function

FA ν′; að Þ ¼ a
π

Z þ1

�1

e�y2

ðν′�yÞ2þa2
dy ð18Þ

and the line shape for the magneto-optic effect around the
central frequency is the Faraday–Voigt function

FB ν′; að Þ ¼ 1
2π

Z þ1

�1

ðν′�yÞe�y2

ðν′�yÞ2þa2
dy: ð19Þ

We find from, e.g., Sampoorna et al. [33] that we can
use a renormalized Faddeeva function

w zð Þ ¼ FAþ iFB ¼
1
π2

Z þ1

�1

e�y2

z�y
dy; ð20Þ

where z¼ ν′þ ia to describe both the line shape functions.

3. Model and results

This section will show and discuss the qualitative
differences that the ARTS Zeeman module offers for
radiative transfer simulations when active. The section
will also show qualitative tests of how the ARTS Zeeman
module compares to previous models and satellite mea-
surements.

The atmospheres used for all the figures and compar-
isons herein are from AFGL 1986 [29]. The atmospheres are
numerically defined up to 120 km — everything above is
ignored and considered vacuum. The only molecule from
which lines are considered in our calculations is O2. The
magnetic field used is from IGRF-11 [30] and we do not
take secular variations into account. We use the algorithm
by Zaghloul and Ali [34]1 to estimate a solution to the
Faddeeva function in all simulations below.

Radiative intensities presented in this section are all in
Rayleigh–Jeans brightness temperature Tb. The Stokes
formalism as defined by Eriksson et al. [20] implies that I
is the total intensity, that the horizontal linear polarization
can be read from I�Q , vertical linear polarization can be
read from IþQ , �451 linear polarization from I�U, 451
linear polarization from IþU, right circular polarization
from I�V and that the left circular polarization can be
read from IþV .

3.1. Properties of the model

A simple comparison between non-/ and Zeeman
affected radiative transfer for various tangent altitudes
above (651N, 1331E) is shown in Fig. 4. Fig. 4 mainly
demonstrates the effect of the Zeeman module in ARTS
for one magnetic field, satellite position, viewing direction,
atmosphere and so on, and the results are not general. We
see that there is almost no difference between non-/ and
Zeeman affected I�Q brightness temperature Tb. Contrary
to this, we also see that there is a huge difference between
non-/ and Zeeman affected IþQ . In other words, it is clear
that the Zeeman splitting affects different types of polar-
ization in different ways. Theory states that �451 polar-
ization and 451 polarization should give roughly similar
resulting Tb, and this is indeed the case. For circular
polarization there is a distinguishable power skewness
to the right of the central frequency for I�V and to the left
of the central frequency for IþV . The asymmetric Tb

http://ab-initio.mit.edu/Faddeeva


Fig. 4. Comparison between a Zeeman module and a non-Zeeman
module affected line. The direction of R

!
at the tangent point is north-

ward and the angle between R
!

and H
!

is approximately 1001. Frequency
shift is given with respect to the O2 118.75 GHz line. Dashed lines
represent the case when the Zeeman effect is ignored and solid lines
represent Zeeman affected radiances. This figure is discussed further in
the text.

Fig. 5. Tangent point limb sounding radiative transfer model comparison
between a varying local magnetic field and a constant local magnetic field
H
!

from the tangent point. Dashed lines represent the tangent point H
!

simulations and solid lines use a full IGRF-11 field. The tangent point of
this plot is at (01N, 01E) and 80 km. The azimuth angle of R

!
at the

tangent is given in the legends. Blue approximates θ at 901 and red
approximates 01. The O2 line is the 118.75 GHz line. (For interpretation of
the references to color in this figure caption, the reader is referred to the
web version of this paper.)

Fig. 6. Qualitative comparison between the implemented model in ARTS
(solid lines) and the forward model as used by von Engeln [12] (dotted
lines) in mid-latitude summer atmospheric conditions for the
N′¼N″¼ J′¼ 9 and J″¼ 10 line. Different colors indicate different tan-
gent altitudes. There is a qualitative overlap between the models with
some differences, likely due to the use of slightly different atmospheres.
However, there are very clear differences at 90 and 100 km. It seems that
the two models disagree about where the outermost peaks should occur.
For more about this figure see the text. (For interpretation of the
references to color in this figure caption, the reader is referred to the
web version of this paper.)
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frequency skewness is to be expected from the quasi-
symmetry of circular polarization in s7 due to its mirrored
frequency shift and relative line strength.

We think that it is important to note the possibility of
varying the local magnetic field vector along the propaga-
tion path in ARTS and how this affects radiative transfer as
compared to using a non-varying local magnetic field
vector, which contrasts the ARTS Zeeman module to the
most previous Zeeman capable radiative transfer models.
Fig. 5 shows such a comparison for two cases when the
angle between H

!
and R

!
is approximately 01 and 901

respectively when the local magnetic field vector at the
tangent point is used throughout the comparative run. We
see that it is preferable to define H
!

as part of a field.
Failing to do so may introduce absolute errors in Tb of at
least 10 K. During the run described above, the magnetic
field in ARTS changed about 1:5 μT in strength, θ changed
with about 111 and η changed with about 291.

3.2. Qualitative rest results

We have qualitatively compared our model to the
simulation results in Fig. 5.6 of von Engeln [12]. The results
of this comparison can be found in Fig. 6. We find that our
models qualitatively agree well for all but the outermost
lines at 90 and 100 km tangent point heights. We do not
understand the reason for this discrepancy. Comparing our
results with results of another model [10], Fig. 2 of
Hartmann et al. [16], however, we find that the consis-
tently concave shape is reproduced in ARTS but not by von
Engeln [12]. This second comparison strengthens our
belief that the implementation in ARTS is valid.

A qualitative comparison with data from Odin-SMR, see
Fig. 7, shows that the implemented Zeeman module more
accurately describes the breadth of the line absorption in
real sub-millimeter wave limb sounding data than a
similar run without the Zeeman module. This qualitative
comparison makes it clear that, e.g., temperature retrieval
at lower pressures using O2 lines must take the Zeeman
effect into account.

4. Summary, conclusions and outlook

This paper has presented a practical approach to the
theory of the Zeeman effect in Stokes formalism in the
atmospheric sciences. Furthermore, we have presented
important features of the implemented ARTS Zeeman
module, we have shown that the ARTS Zeeman module



Fig. 7. Odin-SMR data collected at high frequency resolution for the O2

487 GHz lines show that there is a qualitative necessity to consider the
Zeeman effect. This plot was selectively chosen out of a larger set to
demonstrate the importance of the new module but more work is still
required to retrieve the true temperature. The data was gathered with an
integration time of approximately 1.8 s, with a frequency resolution of
125 kHz and with a 451 polarized antenna. The approximative position of
the satellite is at 589 km height, with coordinates (35.571N, 1.661W), and
the line of sight of the satellite is 111.771 zenith and �9.461 azimuth
hitting a tangent point at approximately 92 km of height.
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mostly agrees with previous models, and we have shown
that ARTS now represents measured satellite signals from
the upper atmosphere better than before. The advantage of
ARTS using Stokes parameterization is that it eases inter-
pretation of the simulation results and makes the integra-
tion of additional modules easier. The ARTS Zeeman
module seems to represent the physics of the Zeeman
effect in atmospheric radiative transfer well.

As an outlook, the ARTS Zeeman module offers the
opportunity to explore several interesting problems in the
atmospheric sciences. The Odin-SMR data could be revis-
ited to retrieve the corrected temperature profiles. The
ARTS Zeeman module may also be used to better deter-
mine the errors associated with ClO, NO and OH retrieval
for models neglecting the Zeeman effect of these species.
We are looking into combining the ARTS Zeeman module
with ground-based measurements to interpret the results
better. We are also investigating the possible use of the
ARTS Zeeman module outside the atmosphere of Earth. For
instance, both O2 and NO are relatively common in the
atmosphere of Mars, which means that instrument para-
meters for future missions may be determined.
Acknowledgments

Acknowledgement is due to all those in the ARTS user
community who have contributed to the ARTS development.

We would also particularly like to thank Axel von
Engeln for helping us to understand his simulations.

Appendix A. Translating the propagation matrix

In coherency formalism the propagation matrix is a
complex 2�2-matrix, with combinations of elements
constituting a physical meaning. In Stokes formalism the
propagation is a real 4�4-matrix, with each element
carrying its own physical meaning. Both formalisms carry
many innate symmetries, as is clear from the physics (e.g.
polarization rotation), and they of course describe the
same physical processes.

To our knowledge the Zeeman effect has so far only been
described in terms of coherency formalism in the Earth
atmospheric sciences. We therefore think it prudent to show
the steps necessary to translate between the coherency
formalism and the Stokes formalism for the Zeeman effect.
The radiative transfer equation without scattering for local
thermodynamic equilibrium using Stokes formalism can be
found in Section 2.1 as Eq. (1). Equivalently, the radiative
transfer equation using coherency formalism [3] is

dS
ds

¼ � GSþSG†
� �

þ GþG†
� �

B; ðA:1Þ

where G is the complex propagationmatrix, S is the radiative
coherency matrix containing information equivalent to that
in the Stokes vector, and B is the Plank function. Note that †
symbolizes the complex transpose.

From Lenior [3], we find that the propagation matrix is
Gm ¼ Amþ iBm , where the subindex m denotes a local
magnetic field vector coordinate system throughout this
section. These coherency matrices are

Am ¼
A1 iA3

� iA3 A2

" #
and

iBm ¼
iB1 B3

�B3 iB2

" #
;

where Am is the attenuation matrix that is Hermitian
(Am ¼ A†

m )and iBm is the magneto-optic effect matrix that
is anti-Hermitian (iBm ¼ � iB†

m ). The attenuation matrices
for π and s7 can be found in Lenior [3]. Due to how we
have defined Am and Bm above, if the values in Am and Bm

only depend on θ (see Fig. 3) then Am ¼ f ðνÞBn

m , where f ðνÞ
is real (Am and Bm remain similar in form but their
effective values follows separate functions of frequency).
Note that n represents the element-wise conjugate. We
will treat the attenuation and the magneto-optic effect
separately in the derivation below.

The transformation from coherency formalism to
Stokes formalism ðS ) I

!Þ is

S ¼
S11 S12
S21 S22

" #
) I

!¼

S11þS22
S11�S22
ðS12þS21Þ

i ðS21�S12Þ

2
66664

3
77775; ðA:2Þ

where the components are in energy and not amplitude of
the wave (see, e.g., Mishchenko et al. [25] and von Engeln
[12] to find these definitions). When looking in more detail
at this transformation it becomes clear that

S ¼ aI IþaQQþaUUþaVV ðA:3Þ
where

aI ¼
1 0
0 1

� �
; aQ ¼ 1 0

0 �1

� �
;



R. Larsson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 133 (2014) 445–453452
aU ¼ 0 1
1 0

� �
; aV ¼ 0 i

� i 0

� �
:

It is now possible to use Eqs. (A.(1) and A.2) to trans-
form a given complex coherency propagation matrix, Gm ,
into the Stokes propagation matrix, Km , of Eq. (1). We see
that this is equivalent to stating that

GmSþSG†
m ) Km I

!
;

which can be divided into two parts, the attenuation

AmSþSAm ) KA;m I
!

and the magneto-optic effect

iðBmS�SBmÞ ) KB;m I
!

;

where it is clear that Km ¼KA;mþKB;m and we must
remember that Km is always real but Gm is not always
real. It is quite tedious, but straightforward, to use Eq. (A.3)
to solve the above expressions for Km. We get the
attenuation propagation matrix

KA;m ¼

A1þA2 A1�A2 0 2A3

A1�A2 A1þA2 0 0
0 0 A1þA2 0

2A3 0 0 A1þA2

2
66664

3
77775; ðA:4Þ

and the magneto-optic effect matrix

KB;m ¼

0 0 0 0
0 0 2B3 0
0 �2B3 0 �B1þB2

0 0 B1�B2 0

2
66664

3
77775: ðA:5Þ

The above expressions assume that the main axis is
determined from the local magnetic field vector rather
than from an external sensor. This is quite inconvenient
from a modeling standpoint as it makes linear polarization
difficult to track along the propagation path. It is therefore
necessary to rotate Eq. (1) from the local magnetic field
vector coordinate system to a sensor dependent coordi-
nate system using

L�1d I
!

ds
¼ �KmL�1 I

!þKmL�1 B
!

; ðA:6Þ

with

L¼

1 0 0 0
0 cos 2η � sin 2η 0
0 sin 2η cos 2η 0
0 0 0 1

2
6664

3
7775; ðA:7Þ

where η is the same as in Fig. 3. The above notations
ensure that Km acts in the magnetic coordinate system on
I
!

m ¼ L�1 I
!

, and that the result d I
!

m=ds¼ L�1 d I
!

=ds
also is in the magnetic coordinate system. The propagation
matrix we use in ARTS to always remain in the sensor
determined coordinate system is thus derived from Eq.
(A.6). We get that

K ¼ LKmL�1; ðA:8Þ
with Km ¼KA;mþKB;m as above.
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