
Qpack2 – a Matlab tool for performing

atmospheric retrievals of OEM type

Patrick Eriksson
(patrick.eriksson@chalmers.se)

September 12, 2014

1 Scope

Qpack2 is a retrieval system, implemented in Matlab, for performing inversions of atmo-
spheric observations inside the framework of “optimal estimation” (OEM). With good
knowledge of the background systems a wide range of retrievals can be handled, but the
primary aim is to provide relatively straightforward retrievals of vertical profiles of at-
mospheric quantities. That is, the atmosphere is treated to be of “1D type” during the
retrieval. Accordingly, a main application areas of Qpack2 is ground-based observations.

The package should be general and flexible for covered measurements. For example,
there is basically no limitations regarding observation geometry. Each measurement can
consist of several spectra, obtained by some scanning procedure or different instruments.
See Sec. 8 for a discussion of possibilities and limitations when it comes to handle more
complex measurements. Further, Qpack2 has been developed to be suitable for operational
inversions, as long as not most extreme calculation speed is required. Some important
aspects here are that batch calculations are allowed and atmospheric a priori profiles can
automatically be extracted from climatology data.

2 Background and introduction

Qpack2 is part of the Atmlab package of Matlab functions. In fact, it is largely a merge
of some of the systems in Atmlab. The computational engine, i.e. the forward model, of
Qpack2 is ARTS-2 (Eriksson et al., 2011). ARTS is a C++ program, downloaded sep-
arately (i.e. not part of Atmlab). The communication with ARTS-2 is made through a
systen denoted as Qarts. OEM inversions are performed by the function oem.m. Clima-
tology data are stored and interpolated through a data format called “atmdata”.

This can be seen as a direct successor of Qpack (Eriksson et al., 2005), despite all code
is written from scratch. For both Qpack versions the computations are controlled by a set
of settings fields packed into a structure denoted as Q (though Qpack2 has also a structure
O). Qpack was built around ARTS-1, this new Qpack version is mainly a consequence of
that ARTS-2 is the maintained version of ARTS. (ARTS-2 is below just denoted as ARTS.)
This gave also an opportunity to make a more stringent implementation and to add some
features. This should hopefully make it easier to maintain and extend Qpack2. Data
formats are now more clearly defined and the ambition level around documentation is
higher (but still modest). A main improvement compared to Qpack is that extraction
of a priori data from climatology data is now an integrated part. On the other hand,

1

the feature of classifying errors into different categories (0-3 in Qpack) and the associated
plotting features were removed as these features are dificult to implement in a generic way.

Quality checks are not handled by Qpack2. For example, there is no default check that
the frequencies of the measurements are as expected. This for efficiency reasons and the
fact that such checks are hard to make in a totally general manner. Checks are left for
accompanying dedicated functions, such as qp2_check_f.

3 Software and installation

The needed software packages are ARTS and Atmlab. The simplest is to obtain and update
these packages through svn. Download instructions for ARTS are found at www.sat.ltu.
se/arts/getarts. The installation details are here not repeated. A plain installation of
ARTS suffices.

Download options for Atmlab are found at www.sat.ltu.se/arts/tools. The file
CONFIGURE (found in the top folder) gives instructions for how to get started with
Atmlab. Qarts2 demands that several “atmlab settings” are activated. This is handled
by the function atmlab. A description of all atmlab settings is obtained by:

>> help atmlab

At least the following atmlab settings are used: ARTS_PATH, ARTS_INCLUDES, VERBOSITY,
FMODEL_VERBOSITY, STRICT_ASSERT and WORK_AREA. Some example settings:

atmlab(’ARTS_PATH’, fullfile(homedir,’ARTS/arts/src/arts’));

atmlab(’ARTS_INCLUDES’, fullfile(homedir,’ARTS/arts/includes’));

atmlab(’FMODEL_VERBOSITY’, 0);

atmlab(’VERBOSITY’, 1);

atmlab(’STRICT_ASSERT’, true);

atmlab(’WORK_AREA’, ’/tmp’);

The standard choice is to place these calls of atmlab in atmlab_conf.m, as described in
CONFIGURE.

4 Documentation

The overall documentation is found in this document. The detailed information is mainly
stored in the implementation files. Information on individual functions is obtained by the
standard Matlab help command. For example:

>> help oem

Some of the used data structures are documented matching the requirements of qinfo.m.
For example, to list all fields and the documentation text of Qarts’ Q:

>> qinfo(@qarts)

The documentation for a specific field is obtained as

>> qinfo(@qarts,’F_BACKEND’)

Wildcards are allowed when defining fields:

>> qinfo(@qarts,’ABS_*’)

Details around development and bug fixes are described in the ChangeLog file of Atmlab
(atmlab/ChangeLog).

5 Overview

5.1 Practicalities

A retrieval by Qpack2 has three main steps:

% 1: Define forward model and retrieval settings

[Q,O] = my_q_fun;

% 2: Import the measurement data to be inverted

Y = my_y_fun;

% 3: Perform the inversion

L2 = qpack2(Q, O, Y);

The variables Q, O, Y and L2 are all structures, and the fields of these structures are
described in Section 6.

The main part of the settings defined in step 1 are found in Q, that match directly the
Q of the Qarts interface to ARTS. All forward model variables are part of Q, and retrieval
variables such as grids and a priori data are also defined in Q. The exceptions are settings
directly associated with OEM, that are stored in O. This division reflects the fact that the
OEM operations are made by a stand-alone function. This function, oem, is implemented
in a general manner, to be applicable for any retrieval case as long as an interface to a
“forward model” is provided.

The measurement data structure Y can be an array. That is, a series of observations
can be inverted in a single call of qpack2, on the condition that a Q and O are valid for all
observations. This implies e.g. that basic sensor characteristics such as backend frequencies
must be common for all the data cases in Y. On the other hand, both observation position
and direction can differ between the observations, and the data from e.g. an aircraft flight
could be inverted in a single run.

The usage of the functions my_q_fun and my_y_fun in steps 1 and 2 is just a suggestion
for how to organise the definition phase of the run, but it is probably a good idea to separate
the inversion settings and the task of importing measurement data.

When Q, O and Y are created, it is just to call qpack2, and everything should work
automatically. The input of qpack2 is fixed (throughout Q, O and Y). The output is
normally the result of the retrieval, packed as a “level 2” data structure (L2). The function
can also provide simulated measurements. This option is triggered by setting the spectrum
field to be empty (if Y is an array, this must be done for all elements):

...

Ye.Y = [];

Ysim = qpack2(Q, O, Ye);

The output is a copy of Ye, with the field Ysim.Y set to the result of the forward model
run. The simulated data match the a priori state of the retrieval set-up.

Several full examples are found in Atmlab’s folder demos, such as qpack2_demo.m.
The examples work with simulated data, created by qpack2 itself. The qpack2_demo.m

example file is also appended to this document as Appendix A. A related example is
arts_oem_demo. It does not use Qpack2, but shows how an OEM inversion is performed
with ARTS as the forward model, and the calculation steps in this example gives a good
view of the interior of Qpack2.

5.2 Units

In most cases SI units are used. For example, frequency off-sets are retrieved in Hz. For
retrieval of species profiles several “units” can be used. First of all, both volume mixing
ratio and number density retrievals can be made. These options are selected by setting
the species unit to vmr and nd, respectively.

Further, the species unit can be also be set to rel. In this case, the retrieved profile is
expressed in fractions of the a priori profile. For example, the a priori state corresponds
to 1, and x = 2 signifies that the species amount is double as high as the a priori. The
remaining species unit is logrel, that is defined as the natural logarithm of the rel unit.
The main reason for using this unit is to introduce a constrain of positive species values.
For example, if z is a retrieved logrel value and va is the a priori VMR, the retrieved
volume mixing ratio is va exp(z), which always is greater than 0.

The prescribed or selected unit is used for all related variables. For example, a priori
covariance matrices must be specified correspondingly. For example, if the selected species
unit is rel, the 1 standard deviation a priori uncertainty should be in the order of 0.5
(that corresponds to a 50% uncertainty). The same applies to output data. No automatic
unit conversions are performed (in contrast to the earlier Qpack version), e.g. the returned
a priori profile for logrel retrievals is a vector of zeros. The basic idea is to return data
that are fully consistent with the assumptions of the retrieval.

Data retrieved using the rel and logrel units can be converted to volume mixing ratio
data by the function qp2_rel2vmr. However, this function handles only data directly
associated with the species, it does not cover, for example, the Jacobian matrix. See
further the help text of the function.

6 Main data structures

6.1 Forward model and retrieval settings

6.1.1 General features

Forward model parameters and most retrieval variables are joined into a single structure,
denoted as Q. This structure has a fixed set of fields. That is, the structure must always
contain exactly this set of fields. However, some fields are used only in particularly cir-
cumstances and not all fields must be set. A field of Q is flagged as undefined by setting it
to {}, and e.g. [] is taken as an active selection. This applies also to structures O and Y.

The structure Q of Qpack2 is identical to the Q of Qarts. Qpack2 makes only slight
modifications of Q before it is given to Qarts. The Qarts system is primarily an interface
to the ARTS forward model, on the same time as retrieval variables can be defined in a
relatively general manner. However, Qarts is not a complete retrieval system, it just allows
definition of retrieval variables in parallel with the forward model data. The ambition is
just to provide the basis for retrieval systems, such as Qpack2 or streamlined software
dedicated to a single sensor.

Qarts is documented through the qinfo feature:

>> qinfo(@qarts)

The call of qinfo above provides a description of all defined fields (Sec. 3) and this
information is also found here as Appendix B. It is recommended to initialise Q as

Q = qarts;

This ensures that Q contains all defined fields, also ones introduced more lately.
All features of ARTS can be accessed through Qarts. Calculations of standard type

can largely be handled by defining the fields of Qarts that have a direct matching ARTS
workspace variables (WSV). That is, the name is the same in Qarts and ARTS, beside that
Qarts use uppercase for its fields and ARTS lowercase for its variables (e.g. Z_SURFACE and
z_surface, respectively). Qarts has also several fields that allow inclusion of workspace
method (WSM) calls. Some of these fields match ARTS agendas and have then a dedicated
purpose (e.g. SURFACE_RTPROP_AGENDA). There are also fields where you are free to include
any set of WSM calls (e.g. WSMS_BEFORE_RTE). You can also use ARTS’s include feature
through the field INCLUDES.

Accordingly, Qarts is a relatively clean and open interface to ARTS, and to set-up
a calculation demands primarily an understanding of ARTS. Built-in documentation of
ARTS WSMs and WSVs is obtained in a terminal as

$ arts -d z_surface

or from within Matlab as

>> arts(’-d z_surface’);

See the documentation of ARTS for more in-depth documentation.
The best introduction to the practical usage of ARTS is obtained through the control

file examples found in ARTS’s folder controlfiles. For an introduction of the usage of
ARTS through Qarts, there are several example scripts in Atmlab’s folder demos, such as
qarts_demo.

6.1.2 Qpack2 specifics

Most fields of Q can be unspecified ({}), but Qpack2 handles some fields in special way:

• Q.RAW_ATMOSPHERE must be unset ({}).

• All existing “atmdata”-fields are considered and are given highest priority. That is,
if such a field is set, any setting of the corresponding field will be overwritten. For
example, if Q.T.ATMDATA is set, any existing values in T_FIELD will have no effect.

• The fields T_FIELD, VMR_FIELD and Z_FIELD must be defined directly in Q, possibly
through the corresponding atmdata fields (see point above). That is, these workspace
variables can not be set by an include file.

• In the case of Z_FIELD there is another option, this field can be set by applying
hydrostatic equilibrium, then activated by setting Q.HSE.ON to true. The reference
point for hydrostatic equilibrium is specified by Y.HSE_P and Y.HSE_Z (Sec. 6.3).

• Q.HSE_P is set to Y.HSE_P. Other fields of Q.HSE must be set by the user, thus
including an active choice for Q.HSE.ON.

• Q.ABSORPTION must be set. The option ’CalcTable’ is not allowed (as it is difficult to
ensure generation of good absorption tables in a general manner). You must either
use ’OnTheFly’ or create an absorption table as a pre-calculation (the ’LoadTable’
option).

• Q.TNOISE_C must be set.

• The a priori knowledge covariance matrix (Sx) is created by arts_sx and the SX

sub-fields of the retrieval quantities must be set.

6.2 OEM settings

Settings directly associated with OEM are put into the structure O. Also this setting
structure is documented through qinfo (see also Appendix C):

>> qinfo(@oem)

Many of the fields of O controls the output of the oem function. For Qpack2 you do not
need to set these fields manually. The output required to provide the specified L2 data
(Section 6.4) is ensured by initialising O as

O = qp2_l2(Q);

Some fields of O are also set by Qpack2, and user settings are overwritten. These fields
are:

• O.msg

• O.sxnorm

For linear inversion, a single active setting is needed:

O.linear = true;

6.3 Measurement data

The series of measurements to be treated is packed into a data structure denoted as Y.
The data fields of this structure are described in qp2_y, following the qinfo format:

>> qinfo(@qp2_y)

The same information is appended to this document in Appendix D. An example:

>> Y(3)

ans =

DAY: 3

F: [800x1 double]

HOUR: 11

HSE_P: 10000

HSE_Z: 1.5677e+04

LATITUDE: 57.4000

LONGITUDE: 11.9300

MINUTE: 57

MONTH: 3

SECOND: 58.0000

TNOISE: 0.0243

Y: [800x1 double]

YEAR: 2002

ZA: 65

Z_PLATFORM: 5

The simplest way to initialise Y is to use qp2_y as

for i = 1 : n

Y(i) = qp2_y;

load(file{i})

Y(i).Y = ...

end

6.4 Retrieved data

Retrieved data are returned as a structure array L2. The fields of L2 are not fixed, the set
of returned fields depend on settings in Q. This makes it impossible to use qinfo here (as
for Q and Y), and the fields are instead described below in this document.

The only mandatory field of L2 is converged. The remaining content of L2 is con-
trolled by the Qarts field L2_EXTRA and the L2 sub-field for the retrieval quantities (e.g.
Q.POLYFIT.L2). As an example on a complete L2, the first element of the output of
qpack2_demo is (the polyfit part is truncated):

>> L2(1)

ans =

year: 2008

month: 2

day: 25

hour: {}

minute: {}

second: {}

converged: 1

dx: 4.4374e-06

cost: 1.0748

cost_x: 5.8390e-04

cost_y: 1.0742

f: [1279x1 double]

y: [1279x1 double]

yf: [1279x1 double]

bl: [1279x1 double]

p_grid: [45x1 double]

t_field: [45x1 double]

z_field: [45x1 double]

species1_name: ’O3’

species1_p: [45x1 double]

species1_xa: [45x1 double]

species1_x: [45x1 double]

species1_e: [45x1 double]

species1_eo: [45x1 double]

species1_es: [45x1 double]

species1_mr: [45x1 double]

ffit_xa: 0

ffit_x: -3.8104e+03

ffit_e: 8.7798e+03

ffit_eo: 8.6418e+03

ffit_es: 1.5504e+03

ffit_mr: 0.9692

polyfit0_xa: 0

polyfit0_x: 0.0516

polyfit0_e: 0.4748

polyfit0_eo: 0.0967

polyfit0_es: 0.4649

polyfit0_mr: 0.7745

polyfit1_xa: 0

polyfit1_x: -0.0022

polyfit1_e: 0.0097

polyfit1_eo: 0.0094

polyfit1_es: 0.0023

polyfit1_mr: 0.9996

...

A description of the options for Q.L2_EXTRA is obtained by:

>> help qp2_l2

Further comments and description of fields directly associated with specific retrieval quan-
tities are found below (no ambition of completeness here).

6.4.1 Various general fields

cost, cost_x and cost_y:
Cost values of retrieved state and fit to measurement. See further oem.m.

P.year, P.month, P.day, P.hour, P.minute, and P.second:
The time of the measurement.

tnoise:
Mean of assumed thermal noise. This is simple average, no weighting with channel widths
is applied. This value has no direct physical meaning, but can be used as a mean to e.g.
remove the most noisy measurements (without having Y at hand).

f:
Frequency vector of measurement. Equals Y.F if set. Otherwise set Q.SENSOR_RESPONSE_F
or Q.F_GRID, depending on if a sensor is applied or not.

y:
Measured spectrum.

yf:
Fitted spectrum. That is, the spectrum matching retrieved state vector.

bl:
Retrieved “baseline”. That is, retrieved spectrum distortion through e.g. polynomial fit-
ting. A scalar 0 if no baseline retrieval is performed.

converged:
Convergence flag. See further oem.m.

dx:
Change in the state vector x between each iteration. See further oem.m.

6.4.2 Background atmospheric state

p_grid, (lat_grid, lon_grid), t_field and z_field:
As the ARTS workspace variables with the same name. The data are identical to the ones
that are provided to the forward model. (If temperatures are retrieved, this information
is used. Otherwise returned data match climatology temperatures.)

6.4.3 Retrieved species

The retrieved species are indexed after the order they are specified in Q and named as
species1, species2 . . . A number of fields is returned for each species. The field names
below are valid for species 1. If two species are retrieved there is also a field named
as species2_name etc. The unit of output follows Q.SPECIES(i).UNIT, see further Sec-
tion 5.2. These set of fields are available:

species1_name:
Tag name of species.

species1_p:
Vertical/pressure retrieval grid for the species.

species1_x:
Retrieved profile. Unit depends on Q.SPECIES(i).UNIT.

species1_xa:
A priori state for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_e:
Total retrieval (observation + smoothing) error for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_eo:
Observation error for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_es:
Smoothing error for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_mr:
Measurement response for the species. This is the sum of the rows of species_A (see
below).

species1_A:
The species specific averaging kernels. That is, this is the diagonal centred sub-matrix
covering only the resolution between changes of the species at different altitudes. The
resolution between variables of different retrieval quantities is thus not covered.

species1_vmr0:
Added automatically if the retrieval unit is rel or logrel, to be used to convert data to
VMR. For example, the retrieved profile in VMR for the rel case is x.*vmr0.

6.4.4 Baseline fit variables

There are two approaches for performing baseline fits, denoted as POLYFIT and SINEFIT.
The two approaches can be used seperately, or be combined.

A set of fields is added for each polynomial coefficient, and for the first polynomial
coefficient they are

P.polyfit0_x, P.polyfit0_xa, P.polyfit0_e, P.polyfit0_eo, P.polyfit0_es and
P.polyfit0_mr:
As corresponding fields above for species (species1_x etc.).

Fields are added in a similar manner for SINEFIT. For the first selected ripple period the
fields are

P.sinefit1_x, P.sinefit1_xa, P.sinefit1_e, P.sinefit1_eo, P.sinefit1_es and
P.sinefit1_mr:
These fields have length 2, where the two values correspond to the cosine and sine terms,
respectively.

6.4.5 Frequency fit variables

Both a shift and a stretch factor can be retrieved:

P.fshift_x, P.fshift_xa, P.fshift_e, P.fshift_eo, P.fshift_es and
P.fshift_mr:
As corresponding fields above for species (species1_x etc.).

P.fstretch_x, P.fstretch_xa, P.fstretch_e, P.fstretch_eo, P.fstretch_es and
P.fstretch_mr:
As corresponding fields above for species (species1_x etc.).

7 Data types and file formats

7.1 Qpack2 variables

The data types in Qpack2 (and in Qarts) follow largely ARTS. Regarding basic data types,
there are two main things to consider. Firstly, a distinction is made between the logical
0 and 1, and the integers 0 and 1. Accordingly, booleans, sometime also denoted as flags,
must be set to true or false. Secondly, vectors are demanded to be columns.

A notable feature of Qpack2 and Qarts is that data fields, booleans and scalars ex-
cluded, can either be set directly or be set to the name of a file (including data of the
expected type). Both these settings are possible

Q.F_GRID = [501.18e9 : 1e6 : 501.58e9]’;

Q.F_GRID = ’f_odinsmr_ac2a.xml;

Note the transpose in the first case (to create a column vector).
The fields Q.ABS_SPECIES.ATMDATA, Q.T.ATMDATA and Q.Z_ATMDATA are intended for

data of climatology character. The data format used here is called atmdata. The format
is similar to the GriddedField format in ARTS, but has also fields for e.g. units. The
atmdata format is based on the general gformat:

>> help gformat

For a description of the specialities of atmdata:

>> help isatmdata

For example, the MSIS temperature climatology found in arts-xml-data is stored as Grid-
dedField4 but imported as

Q.T_ATMDATA = gf_artsxml(fullfile(arts_xmldata_path, ’climatology’, ...

’msis90’, ’msis90.t.xml’), ’Temperature’, ’t_field’);

This produces data of atmdata type:

>> Q.T_ATMDATA

ans =

TYPE: ’atmdata’

NAME: ’Temperature’

SOURCE: [1x65 char]

DIM: 4

DATA: [4-D double]

DATA_NAME: ’Temperature’

DATA_UNIT: ’K’

GRID1: [141x1 double]

GRID1_NAME: ’Pressure’

GRID1_UNIT: ’Pa’

GRID2: [19x1 double]

GRID2_NAME: ’Latitude’

GRID2_UNIT: ’deg’

GRID3: 0

GRID3_NAME: ’Longitude’

GRID3_UNIT: ’deg’

GRID4: [13x1 double]

GRID4_NAME: ’doy’

GRID4_UNIT: ’’

7.2 File formats

The standard format for data input files is “ARTS xml”. These files are hardly cre-
ated by hand, but stored from Matlab (through xmlStore) or from ARTS (through
WriteXML). If ARTS is compiled with support for NetCDF, that format can also be used
(arts_nc_write_datatype and WriteNetCDF, respectively).

8 Measurements consisting of multiple spectra

As long as each measurement consists of a single spectrum, Qpack2 should be quite flexible
in treating sensor aspects. For some conditions, it also possible to handle measurements
consisting of multiple spectra.

8.1 Common sensor characteristics

If the sensor characteristics are common for all spectra involved (not including thermal
noise) it is relatively straightforward to apply Qpack. For example, the same sensor is
moved vertically, or rotated to measure at different zenith angles, can be treated. Re-
quirements and considerations to handle such multiple-spectra measurements include:

• The fields Y.Z_PLATFORM and Y.ZA shall give the altitude and zenith angle of each
spectrum, and are accordingly (column) vectors instead of scalar values for single-
spectra cases.

• Y.LATITUDE and Y.LONGITUDE are kept as scalar values, the same geographical po-
sition is assumed for all spectra.

• Y.T_NOISE must be extended where each column describes the noise of the corre-
sponding spectrum. Hence, the noise level can vary between the spectra.

• If a baseline fit is performed, the corresponding SX-fields must be extended. These
fields are scalar values for single-spectrum observations. With multiple spectra,
the covariance matrices can include an expected correlation between the baseline
coefficient for different spectra. For example, if the zero-order POLYFIT coefficient is
expected to have a standard deviation of 2 K and has a correlation of 0.9 between
two spectra, these assumptions are included as

Q.POLYFIT.SX0 = 2.0^2 * [1 0.9; 0.9 1];

It is also possible to describe the scanning in a 3D atmosphere, that should be of interest if
the azimuth angle matters. This option should be of interest for cases including a Zeeman
influence or wind retrievals. Additional considerations are then:

• Q.ATMOSPHERE_DIM shall be set to 3.

• Q.LAT_GRID and Q.LON_GRID must be specified.

• Atmospheric fields, such as Q.T_FIELD, must be 3D. The standard choice should
be to set the fields to be constant in latitude and longitude directions. Using the
ATMDATA feature with an input 1D atmosphere handles this automatically.

• The field Y.AA shall be set, and match Y.ZA in length.

• Latitude and longitude retrieval grids, such in Q.ABS_SPECIES.GRIDS, must be spec-
ified, but must have length one. Any value should work. One example:

Q.ABS_SPECIES(1).GRIDS = { Q.P_GRID, mean(Q.LAT_GRID), mean(Q.LON_GRID)};

Retrieved atmospheric data will effectively have no latitude and longitude dimension
and be of 1D type.

The file qpack2_wind3d_demo exemplifies retrievals of this type.

8.2 More complex set-ups

It can be considered to append spectra from different instruments to perform a joint
retrieval. In a few cases this can be handled as in the sub-section above, but would
normally require a more complex set-up. Another more complex situation is when the
sensor characteristics change during e.g. a limb scanning sequence. Both these examples
can be handled by ARTS by making use of the yCalcAppend workspace method.

Using Qpack together with yCalcAppend is not impossible but requires detailed knowl-
edge of how both Qpack and ARTS work and far from all possible measurement scenarios
can be treated. Hence, it is best to contact Patrick for advice before start trying to
implement a set-up of this type.

References

Eriksson, P., C. Jiménez, and S. A. Buehler, Qpack, a general tool for instrument simula-
tion and retrieval work, J. Quant. Spectrosc. Radiat. Transfer, 91, 47-64, 2005.

Eriksson, P., S. A. Buehler and C. P. Davis and C. Emde and O. Lemke, ARTS, the at-
mospheric radiative transfer simulator, Version 2, J. Quant. Spectrosc. Radiat. Transfer,
112, 1551-1558, 2011.

Appendices

A An example script

% QPACK2_DEMO Demonstration of the Qpack2 retrieval system

%

% The main features of Qpack2 are demonstrated. The example case is airborne

% measurements of ozone at 110.8 GHz. Synthetic measurement data are

% generated internally. See the code and internal comments for details.

%

% Everything is here put into a single file. For practical retrievals it

% is probably better to put the definitions of Q (together with O?) in a

% separate function (i.e. [Q,O] = q_mycase). A function to import

% measurement data into the "Y format" (see *qp2_y*) is needed. The

% retrieval result is returned in the L2 format produced by *qp2_l2*.

%

% This script focuses on giving an introduction, indicating different

% retrieval units and retrieval of other variables. See also *qpack2_demo2*.

%

% FORMAT L2 = qpack2_demo

%

% OUT L2 L2 data output from *qpack2*.

% 2010-05-12 Created by Patrick Eriksson.

function L2 = qpack2_demo

errid = [’atmlab:’ mfilename];

%- Qarts settings

%

Q = q_demo; % Local file, found below

%- Measurement data

%

Y = y_demo(Q); % Local file, found below

%- Check that all frequencies are OK

%

if ~qp2_check_f(Q, Y, 1e3);

error(errid, ...

’Some mismatch between Q.F_BACKEND and frequencies of spectra.’);

end

%- OEM variables

%

O = qp2_l2(Q); % This ensures that OEM returns the variables needed

% to fill the L2 structure, as defined in Q

O.linear = false;

%

if ~O.linear

O.itermethod = ’GN’;

O.stop_dx = 0.01;

O.maxiter = 5;

end

%- Make inversion

%

L2 = qpack2(Q, O, Y);

%- Plot, if no output argument

%

if ~nargout

% Profiles

figure(1),clf

plot(L2(1).species1_x*1e6, p2z_simple(L2(1).species1_p)/1e3, ’b’, ...

L2(2).species1_x*1e6, p2z_simple(L2(2).species1_p)/1e3, ’r’, ...

L2(1).species1_xa*1e6, p2z_simple(L2(1).species1_p)/1e3, ’k-’);

xlabel(’Ozone [VMR]’);

ylabel(’Approximate altitude [km]’);

axis([0 8 10 90])

legend(’Retrieval 1’, ’Retrieval 2’, ’True and a priori’);

% Spectra

figure(2),clf

h=plot(L2(1).f/1e9, L2(1).y, ’k.’, L2(2).f/1e9, L2(2).y, ’k.’, ...

L2(1).f/1e9, L2(1).yf, ’b-’, L2(2).f/1e9, L2(2).yf, ’r-’, ...

L2(1).f/1e9, L2(1).bl, ’b-.’, L2(2).f/1e9, L2(2).bl, ’r-.’);

xlabel(’Frequency [GHz]’);

ylabel(’Tb [K]’);

axis([min(L2(1).f/1e9) max(L2(1).f/1e9) 0 18])

legend(h(3:end), ’Fitted 1’, ’Fitted 2’, ’Baseline 1’, ’Baseline 2’);

end

return

%---

%---

%---

function Q = q_demo

errid = [’atmlab:’ mfilename];

%- Atmlab settings

%

arts_xmldata_path = atmlab(’ARTS_XMLDATA_PATH’);

arts_includes = atmlab(’ARTS_INCLUDES’);

if isnan(arts_xmldata_path)

error(errid,’You need to set ARTS_XMLDATA_PATH to run this exmaple.’);

end

if isnan(arts_includes)

error(erird,’You need to ARTS_INCLUDES to run this example.’);

end

%

fascod = fullfile(arts_xmldata_path, ’planets’, ’Earth’, ’Fascod’);

%- Init Q

%

Q = qarts;

%

Q.INCLUDES = { fullfile(’ARTS_INCLUDES’, ’general.arts’), ...

fullfile(’ARTS_INCLUDES’, ’agendas.arts’), ...

fullfile(’ARTS_INCLUDES’, ’continua.arts’), ...

fullfile(’ARTS_INCLUDES’, ’planet_earth.arts’) };

Q.ATMOSPHERE_DIM = 1;

Q.STOKES_DIM = 1;

Q.J_DO = true;

Q.CLOUDBOX_DO = false;

%= Define agendas

%

% Here we do it by using the predefined agenda templates

% (found in arts/controlfiles/general/agendas.arts)

% This works only if the pre-defined agenda is names following the pattern:

% name_of_agenda__(Something)

%

Q.PPATH_AGENDA = { ’ppath_agenda__FollowSensorLosPath’ };

Q.PPATH_STEP_AGENDA = { ’ppath_step_agenda__GeometricPath’ };

Q.BLACKBODY_RADIATION_AGENDA = { ’blackbody_radiation_agenda__Planck’ };

Q.IY_SPACE_AGENDA = { ’iy_space_agenda__CosmicBackground’ };

Q.IY_SURFACE_AGENDA = { ’iy_surface_agenda__UseSurfaceRtprop’ };

Q.IY_MAIN_AGENDA = { ’iy_main_agenda__Emission’ };

%- Radiative transfer

%

Q.IY_UNIT = ’RJBT’;

Q.YCALC_WSMS = { ’yCalc’ };

%

Q.PPATH_LMAX = 250;

%- Surface

%

Q.Z_SURFACE = 1e3; % Just a dummy value. A 10 km

% observation altitude is assumed here

%- Absorption

%

Q.ABS_LINES = fullfile(atmlab_example_data, ’o3line111ghz’);

Q.ABS_LINES_FORMAT = ’Arts’;

%

Q.ABSORPTION = ’OnTheFly’;

Q.ABS_NLS = [];

%- Pressure grid

%

z_toa = 95e3;

%

Q.P_GRID = z2p_simple(Q.Z_SURFACE-1e3 : 2e3 : z_toa)’;

%- Frequency, spectrometer and pencil beam antenna

%

% The hypothetical spectrometer has rectangular response functions

%

Q.F_GRID = qarts_get(fullfile(atmlab_example_data , ...

’f_grid_111ghz.xml’));

%

H = qartsSensor;

%

H.SENSOR_NORM = true;

%

H.BACKEND_DO = true;

df = 0.5e6;

H.F_BACKEND = (min(Q.F_GRID)+df : df : max(Q.F_GRID)-df)’;

%

B.name = ’Spectrometer channel response function’;

B.gridnames = { ’Frequency’ };

B.grids = { [-df/2 df/2] };

B.dataname = ’Response’;

B.data = [1 1];

%

H.BACKEND_CHANNEL_RESPONSE{1} = B;

clear B

%

Q.SENSOR_DO = true;

Q.SENSOR_RESPONSE = H;

%

Q.ANTENNA_DIM = 1;

Q.MBLOCK_ZA_GRID = 0;

%- Correlation of thermal noise

%

f = H.F_BACKEND;

cl = 1.4 * (f(2) - f(1));

cfun = ’gau’;

cco = 0.05;

%

Q.TNOISE_C = covmat1d_from_cfun(f, [], cfun, cl, cco);

%

clear H f

%- Define L2 structure (beside retrieval quantities below)

%

Q.L2_EXTRA = { ’cost’, ’dx’, ’xa’, ’y’, ’yf’, ’bl’, ’ptz’, ...

’mresp’, ’A’, ’e’, ’eo’, ’es’, ’date’ };

%- Temperature

%

Q.T.RETRIEVE = false;

Q.T.ATMDATA = gf_artsxml(fullfile(arts_xmldata_path, ’climatology’, ...

’msis90’, ’msis90.t.xml’), ’Temperature’, ’t_field’);

%- Determine altitudes through HSE

%

Q.HSE.ON = true;

Q.HSE.P = Q.P_GRID(1);

Q.HSE.ACCURACY = 0.1;

%- Species

% Ozone, only species is retrieved here

Q.ABS_SPECIES(1).TAG = { ’O3’ };

Q.ABS_SPECIES(1).RETRIEVE = true;

Q.ABS_SPECIES(1).L2 = true;

Q.ABS_SPECIES(1).GRIDS = { Q.P_GRID, [], [] };

Q.ABS_SPECIES(1).ATMDATA = gf_artsxml(fullfile(fascod, ...

’midlatitude-winter’, ’midlatitude-winter.O3.xml’), ’O3’, ’vmr_field’);

%

% If you don’t apply a min value (by MINMAX), you could need to active this:

%Q.VMR_NEGATIVE_OK = true;

%

% For demonstration, setting for several units are provided:

switch 1

case 1 % Constant VMR

Q.ABS_SPECIES(1).UNIT = ’vmr’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 1.5e-6, ...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.3e-6, ...

’lin’, 0.5, 0.00, @log10);

Q.ABS_SPECIES(1).MINMAX = 1e-12;

case 2 % Constant rel

Q.ABS_SPECIES(1).UNIT = ’rel’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.5, ...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.1, ...

’lin’, 0.5, 0.00, @log10);

Q.ABS_SPECIES(1).MINMAX = 1e-6;

case 3 % Mimic case 2 in vmr

Q.ABS_SPECIES(1).UNIT = ’vmr’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, ...

[Q.ABS_SPECIES(1).ATMDATA.GRID1,...

0.5 * Q.ABS_SPECIES(1).ATMDATA.DATA],...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, ...

[Q.ABS_SPECIES(1).ATMDATA.GRID1, ...

0.1 * Q.ABS_SPECIES(1).ATMDATA.DATA],...

’lin’, 0.5, 0.00, @log10);

Q.ABS_SPECIES(1).MINMAX = 1e-12;

case 4 % Constant logrel

Q.ABS_SPECIES(1).UNIT = ’logrel’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.5, ...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.1, ...

’lin’, 0.5, 0.00, @log10);

Q.ABS_SPECIES(1).MINMAX = 1e-6;

end

%- Water

%

% This generates no absorption, as linefile has no H2O lines

%

Q.ABS_SPECIES(2).TAG = { ’H2O’ };

Q.ABS_SPECIES(2).RETRIEVE = false;

Q.ABS_SPECIES(2).ATMDATA = gf_artsxml(fullfile(fascod, ...

’midlatitude-winter’, ’midlatitude-winter.H2O.xml’), ’H2O’, ’vmr_field’);

%- Wind

%

% Here demonstrated for v-component, that should the component of main

% concern for ground-based instruments. This component can be seen as the

% part of the horizontal wind going along the viewing direction, where

% positive values mean a movement away from the sensor.

%

Q.WIND_V_FIELD = []; % This is a short-cut for zero wind.

%

Q.WIND_V.RETRIEVE = false; % Set to true to activate retrieval

Q.WIND_V.L2 = true;

Q.WIND_V.GRIDS = { Q.P_GRID(1:2:end), [], [] };

Q.WIND_V.SX = covmat1d_from_cfun(Q.WIND_V(1).GRIDS{1}, 40, ...

’lin’, 0.5, 0.00, @log10);

if Q.WIND_V.RETRIEVE

Q.WSMS_AT_START{end+1} = ’IndexSet(abs_f_interp_order,3)’;

end

%- Pointing

%

% Here just included for testing purposes, of little interest for ground-based

% spectrometers.

%

Q.POINTING.RETRIEVE = false;

Q.POINTING.DZA = 0.1;

Q.POINTING.POLY_ORDER = 0;

Q.POINTING.CALCMODE = ’recalc’;

Q.POINTING.SX = 1;

Q.POINTING.L2 = true;

%- Frequency shift

%

Q.FSHIFTFIT.RETRIEVE = true;

Q.FSHIFTFIT.DF = 25e3;

Q.FSHIFTFIT.SX = 50e3^2;

Q.FSHIFTFIT.L2 = true;

%- Frequency stretch

%

Q.FSTRETCHFIT.RETRIEVE = false; % Set to true to activate retrieval

Q.FSTRETCHFIT.DF = 25e3;

Q.FSTRETCHFIT.SX = 50e3^2;

Q.FSTRETCHFIT.L2 = true;

%- Polyfit

%

% A polynomial of order 3 is used for "baseline fit".

%

Q.POLYFIT.RETRIEVE = true;

Q.POLYFIT.ORDER = 3;

Q.POLYFIT.L2 = true;

Q.POLYFIT.SX0 = 1^2;

Q.POLYFIT.SX1 = 0.5^2;

Q.POLYFIT.SX2 = 0.2^2;

Q.POLYFIT.SX3 = 0.1^2;

%- Sinefit

%

% Here demonstrated with two period lengths

%

Q.SINEFIT.RETRIEVE = false; % Set to true to activate retrieval

Q.SINEFIT.PERIODS = [75e3 200e3]’;

Q.SINEFIT.L2 = true;

Q.SINEFIT.SX1 = 0.2^2;

Q.SINEFIT.SX2 = 0.4^2;

return

%---

%---

%---

function Y = y_demo(Q)

% The data should be loaded from one or several files, but are here genereted

% by a forward model call to show how qpack2 can also be used to generate

% simulaled measurements (matching a priori assumptions).

% The simulated data model airborn measurements at two different zenith

% angles, from two nearby positions.

% Init Y

%

Y = qp2_y;

% Set a date

%

Y.YEAR = 2008;

Y.MONTH = 2;

Y.DAY = 25;

% Lat / lon

%

Y.LATITUDE = 45;

Y.LONGITUDE = exp(1);

% An airborn measurement assumed here

%

Y.Z_PLATFORM = 10.5e3;

Y.ZA = 50;

% Reference point for hydrostatic equilibrium

%

Y.HSE_P = 100e2;

Y.HSE_Z = 16e3;

% Set backend frequencies

%

Y.F = Q.SENSOR_RESPONSE.F_BACKEND;

% Thermal noise standard deviation

%

Y.TNOISE = 0.1;

% To test varying noise

%Y.TNOISE = linspace(0.03, 0.07, length(Y.F))’;

% Simulate a measurement

%

Y.Y = []; % A flag to tell qpack2 to calculate the

% spectrum ({} signifies undefined!).

% Add a second measurement

%

Y(2) = Y(1);

%

Y(2).LONGITUDE = pi;

Y(2).ZA = 45;

% Calculate simulated spectra

%

Y = qpack2(Q, oem, Y); % Dummy oem structure OK here

% Add thermal noise

%

% The correlation specified in Q is included

%

for i = 1 : length(Y)

Y(i).Y = Y(i).Y + Y(i).TNOISE .* make_noise(1,Q.TNOISE_C);

end

% Add a constant "baseline shift" for measurement 2

%

Y(2).Y = Y(2).Y + 1;

B The fields of Q

The information below is obtained in Atmlab by typing:

>> qinfo(@qarts)

ABS_LINES:

The data on spectroscopic lines to use. See *ABS_LINES_FORMAT* for

how to handle cases without lines. Can be given in two ways:

1. As a file name. All formats handled by arts can then be used.

See ABS_LINES_FORMAT. The reading is not restricted to any

frequency range.

2. As an array of line data. This option is only allowed when

ABS_LINES_FORMAT is set to ’Arts’.

ABS_LINES_FORMAT:

The format of spectroscopic data.

Possible line formats are ’Arts’, ’Hitran’, ’Jpl’ and

’Mytran2’. Note that these strings must be given exactly as stated

here (first upper case etc.).

The field can further be set to ’None’ which indicates that no

line data shall be included (the WSV *abs_lines_per_species* is

set to be empty).

ABS_LINESHAPE:

The line shape to use. The same line shape is used for all tag

groups. Shall be a string. Do "arts -d abs_lineshapeDefine" to

list valid options.

ABS_LINESHAPE_CUTOFF:

The line shape cut-off to apply. The same cut-off is used for all

tag groups. A value of -1 means no cut-off. Do "arts -d

abslineshapeDefine" for further information.

ABS_LINESHAPE_FACTOR:

The line shape normalisation factor to apply. The same factor is

used for all tag groups. Shall be a string. Do "arts -d

abs_lineshapeDefine" for valid options.

ABS_LOOKUP:

Has the same functionality as the arts WSV with the same name.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_MODELS:

Control files including descriptions of absorption models to use

(called continua in arts). This shall be a series of calls of

abs_cont_descriptionAppend (call of *abs_cont_descriptionInit*

shall be included).

Given as an array of strings. The atmlab setting ARTS_INCLUDES

is recognised. A file containing standard choices is:

ARTS_INCLUDES/continua.arts

ABS_NLS:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. Can be set by *qarts_abs_species*.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_NLS_PERT:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable. Empty ([])signifies no perturbations.

ABS_P:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_SPECIES:

Specification of absorption species. Arts requires in many cases

that H2O and N2 are included. This is a structure array defining

species and associated retrieval variables. These sub-fields are

defined:

<TAG> Tag group data, following *arts_tgs_cnvrt*.

<ATMDATA> VMR data for the species. The input shall follow the

atmdata format, defined in *isatmdata*. The data specified here

are not directly given to arts, it can only be used to set-up

VMR_FIELD. This step is handled by *qarts_vmr_field*. The field

is accordingly not mandatory. The main usage of this field should

be to import data of climatology character. Can be given as a

variable or a file saved through *gf_save*. This field is

recognised and used automatically by Qpack2.

<RETRIEVE> If set to true the species is retrieved. Otherwise the

species is not retrieved (what a surprise!).

<UNIT> Retrieval unit. Allowed choices are ’rel’, ’vmr’, ’nd’, and

’logrel’. For some more information:

arts -d jacobianAddAbsSpecies.

<GRIDS> Retrieval grids for the species. An array of vectors of

length 3: {p_grid,lat_grid,lon_grid}. Grids for dimensions not

used shall be empty.

<SX> Covariance matrix of a priori knowledge for the species. Size

must match the grid field. Data must match <UNIT>. A matrix, that

can be sparse.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved state for the species

will be included in the L2 output. Otherwise not. This field has

no importance if RETRIEVE is false.

<L2_RANGE> Fine tuning of L2 data ranges. The default is to store

data directly matching the retrieval grids. This is done if the

field is non-existing. This field allows you to either crop or

extend range of the L2 data. It is then a vector of length, at

least, twice the atmospheric dimensionality: [p_min p_max lat_min

lat_max lon_min lon_max] where lat_min gives the minimum latitude

to include etc.

If a given limit is inside the range covered by the corresponding

retrieval grid, this results in that the data are cropped. This

feature can be used to remove parts that are of no interest for L2

data (such as parts always having a low measurement response).

The default L2 output is not reflecting the fact that values at

end points of the retrieval grids are valid all the way to the

matching atmospheric limit. This field can also be used to

incorporate this part. If a limit is outside the retrieval grid,

the L2 data will also include the retrieved state at the specified

or the atmospheric limit (which is the closest to the retrieval

grid). In practice this signifies a duplication of end point

data.

Only retrieved profile and errors are modified. Averaging kernel,

covariance and gain matrices are kept consistent with the original

retrieval grids.

<MINMAX> Min and max allowed value for retrievals. A single min

and max value is applied for each species. The field can be left

undefined, be empty, be a scalar or vector of length 2. A single

value as taken as min, and is then set to Inf. The min value can

be set to -Inf. The unitfollows the field *UNIT*.

The primary usage of the field should be to avoid negative vmr

values. (The limits are applied also during the iterations of a

non-linear inversion.

ABS_T:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_T_PERT:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable. Empty ([]) signifies no perturbations.

ABS_VMRS:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_WSMS:

Workspace method calls to include just before calculation of

absorption. Format and options as WSMS_AT_START.

ABS_XSEC_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

If the field *ABSORPTION* is set, this agenda is set to its

most common choice. Accordingly, this field is only needed if your

calculations require a deviating agenda definition.

ABSORPTION:

String describing how absorption shall be calculated/obtained.

Existing options are:

{} : Absorption variables defined by include files. All

absorption fields above will be ignored.

’OnTheFly’ : Absorption is calculated for each propagation path

point. The agenda *abs_scalar_gas_agenda* must here be set by an

include file. No other absorption variables need to be set.

’CalcTable’: Calculate and use an absorption look-up table. See

qarts_abstable for simple setting of needed variables.

’LoadTable’: Load and use pre-calculated absorption look-up

table, defined by field *ABS_LOOKUP*.

If this field is set, *ABS_XSEC_AGENDA* and

PROPMAT_CLEARSKY_AGENDA are set matching calculations of

standard type.

ANTENNA_DIM:

As the arts WSV with the same name.

This field can be ignored, depending on SENSOR_RESPONSE.

ATMOSPHERE_DIM:

As the arts WSV with the same name.

BATCH:

Batch calculations. Defined by a structure, described in

qartsBatch. Type ’qinfo(@qartsBatch);’ for further information.

Batch calculations are not started automatically (in e.g.

arts_y), but must be selected specifically (most easily done by

using *arts_batch*).

BLACKBODY_RADIATION_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

CLOUDBOX:

Handling of cloudbox/scattering. Defined by a structure, described

in *qartsCloudbox*. Type ’qinfo(@qartsCloudbox);’ for further

information.

CLOUDBOX_DO:

Boolean to activate the cloud box (scattering calculations), or

not.

{}: Nothing is done. Relevant data are assumed to be specified

by inclusion files.

0: Call of *cloudboxOff* is included.

1: Action follows setting of field *CLOUDBOX*.

F_GRID:

Has the same functionality as the arts WSV with the same name.

Can be given either as the name of a XML file, or as a matching

variable.

FSHIFTFIT:

Structure for specification of frequency shift retrievals. No

retrievalis made if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddFreqShift*. The polynomial

order is hard-coded to zero. These sub-fields are defined:

<RETRIEVE> Flag to activate frequency retrieval.

<DF> Size for numerical perturbation.

<SX> Variance of a priori knowledge on the variable.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved frequency fit variables

will be included in the L2 output. Otherwise not. This field has

no importance if RETRIEVE is false.

FSTRETCHFIT:

Structure for specification of frequency stretch retrievals. No

retrieval is made if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddFreqStretch*. The polynomial

order is hard-coded to zero. These sub-fields are defined:

<RETRIEVE> Flag to activate frequency retrieval.

<DF> Size for numerical perturbation.

<SX> Variance of a priori knowledge on the variable.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved frequency fit variables

will be included in the L2 output. Otherwise not. This field has

no importance if RETRIEVE is false.

HSE:

Variables associated with hydrostatic equilibrium. A structure

with the sub-fields:

<ON> Flag to enforce hydrostatic equilibrium. If true, the WSV

*z_field*is recalculated by *z_fieldFromHSE* (note that a "first

guess" *z_field* must be provided).

<P> Pressure for reference point. Matches the WSV *p_hse*.

<ACCURACY> Calculation accuracy. Matches the WSV

z_hse_accuracy.

If the field is unset, no action is taken. This equals to set

Q.HSE.ON to false. Note the setting Q.T.HSE which controls the

calculation of t-jacobians. The two settings are treated as

independent, but should be set to the same value (true/false). If

the HSE is maintained during the iterations of a temperature

retrieval is controlled by THIS field.

INCLUDES:

Paths to control files to be included. These files will be

included at the top of the control file, only preceded by

WSMS_AT_START. Given as an array of strings. Format and options as

for WSMS_AT_START.

The atmlab setting ARTS_INCLUDES is recognised. To include the

standard arts general definition file,

select:{’ARTS_INCLUDES/general.arts’}

INPUT_FILE_FORMAT:

The file format for arts input files. That is, the format of the

files created in Matlab to be read by arts. Possible options are

’binary’, and ’double’. The binary option, that is default, should

be most efficient. Use ’double’ if you want to visually inspect

the files generated. (The option ’float’ is not allowed, as this

is not always sufficient for frequency data.)

IY_AUX_VARS:

As the arts WSV with the same name.

IY_MAIN_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

IY_SPACE_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

IY_SUB_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

IY_SURFACE_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

IY_TRANSMITTER_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

IY_UNIT:

As the arts WSV with the same name. That is, the radiance unit.

The options include:

’1’ : Basic radiances [W/m2/Hz/sr]

’RJBT’ : Conversion to brightness temperature by the

Rayleigh-Jeans approximation of the Planck function.

’PlanckBT’: Conversion to brightness temperature by the Planck

function.

For further information: ’arts -d iy_unit’.

J_DO:

Boolean to include calculation of jacobians.

{}: Nothing is done. Relevant data are assumed to be specified

by inclusion files.

0: Call of *jacobianOff* is included.

1: Action follows setting of field *J*.

LAT_GRID:

As the arts WSV with the same name. For example, shall be empty

for 1D simulations.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

LAT_TRUE:

As the arts WSV with the same name. Can be given either as the

name of a XML file, or as a matching Matlab variable.

LON_GRID:

As the arts WSV with the same name. For example, shall be empty

for 1D and 2D simulations.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

LON_TRUE:

As the arts WSV with the same name. Can be given either as the

name of a XML file, or as a matching Matlab variable.

L2_EXTRA:

Information to functions repacking retrieval information. Such a

product is normally denoted as L2 data. This field lists data to

be included beside the direct retrieval quantities, for which

their L2 field has the same functionality. The information is

given as string array, e.g.:

Q.L2_EXTRA = {’cost’,’mresp’,’ptz’}

There is no general L2 function and the possible data output (and

coding) differs between the functions.

MAG_U_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

MAG_U:

Data and settings associated with MAG_U_FIELD. Has the same role

as T with respect to T_FIELD, but as there are no retrievals

associated with MAG_U there is only one sub-field here:

<ATMDATA> The input shall follow the atmdata format, defined in

isatmdata. The data specified here are not directly given to

arts, it can only be used to set-up *MAG_U_FIELD*. This step is

handled by *qarts_atm_field*. The main usage of this field should

be to import data of climatology character. Can be given as a

variable or a file saved through *gf_save*. This field is

recognised and used automatically by Qpack2.

MAG_V_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

MAG_V:

Data and settings associated with the v-component of the magnetic

field. Defined as MAG_U, and the details are nor repeated here.

MAG_W_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

MAG_W:

Data and settings associated with the w-component of the magnetic

field. Defined as MAG_U, and the details are nor repeated here.

MBLOCK_AA_GRID:

Has the same functionality as the arts WSV with the same name.

This field can be ignored, depending on setting of

SENSOR_RESPONSE.

If the antenna dimension is 1, this variable can be left as {}.

For 2D antennas it has to be set even if the sensor does not

include an antenna.

Can be given either as the name of a XML file, or as a Matlab

variable.

MBLOCK_ZA_GRID:

Has the same functionality as the arts WSV with the same name.

This has to be set even if the sensor does not include an

antenna.

Can be given either as the name of a XML file, or as a Matlab

variable.

OUTPUT_FILE_FORMAT:

As the arts WSV with the same name. That is, the format for files

created by arts. Possible options are ’binary’ and ’ascii’. The

binary option should in general be most efficient.

P_GRID:

Has the same functionality as the arts WSV with the same name.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

POINTING:

Structure for specification of pointing fit retrievals. No

retrieval ismade if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddPointingZa*. These

sub-fields are defined:

<RETRIEVE> Flag to activate pointing retrieval.

<DZA> Size for numerical perturbation. See used WSM.

<POLY_ORDER> Order of polynomial to describe the time variation of

pointing errors.

<CALCMODE> The manner in which the jacobian is determined. See

used WSM

<SX> Covariance matrix of a priori knowledge for pointing fit

variables. A square matrix of size POLY_ORDER+1.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved pointing variables will

be included in the L2 output. Otherwise not. This field has no

importance if RETRIEVE is false.

POLYFIT:

Structure for specification of polynomial baseline fits. No

retrieval ismade if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddPolyfit*. All

no_xxx_variation arguments of the WSM are set to default value.

The different polynomial coefficients are assumed to be

uncorrelated. These sub-fields are defined:

<RETRIEVE> Flag to activate pointing retrieval

<ORDER> Order of polynomial fit.

<SX0> Covariance matrix of a priori knowledge for coefficient of

order zero. There shall be such a matrix for each coefficient

order until:

<SXn> Covariance matrix of a priori knowledge for coefficient of

order POLY_ORDER. The last required covariance matrix.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved baseline variables will

be included in the L2 output. Otherwise not. This field has no

importance if RETRIEVE is false.

PPATH_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

PPATH_LMAX:

As the arts WSV with the same name .

Can be given either as the name of a XML file, or as a Matlab

variable.

PPATH_LRAYTRACE:

As the arts WSV with the same name .

Can be given either as the name of a XML file, or as a Matlab

variable.

PPATH_STEP_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

PROPMAT_CLEARSKY_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

If the field *ABSORPTION* is set, this agenda is set to its

most common choice (for the selected ABSORPTION option).

Accordingly, this field is only needed if your calculations

require a deviating agenda definition.

RAW_ATMOSPHERE:

If set, a "raw atmosphere" in read. This is the main file name for

the raw atmosphere. See further ’arts -d AtmRawRead’.

Data in the fields T_FIELD, Z_FIELD or VMR_FIELD are included at a

later stage and will then overwrite the data from the raw

atmosphere. This gives thus some flexibility to mix data from

different sources.

RAW_ATM_EXPAND_1D:

Boolean to expand an 1D raw atmosphere to set ATMOSPHERE_DIM. If

set to 1, the WSM *AtmFieldsCalcExpand1D* is used instead of

AtmFieldsCalc.This variable is only used if RAW_ATMOSPHERE is

set.

REFELLIPSOID:

Reference ellipsoid. As the arts WSV with the same name .

REFR_INDEX_AIR_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

SENSOR_DO:

Boolean to include sensor characteristics. Otherwise monochromatic

pencil beam calculations are performed. *SENSOR_POS/LOS* are used

in both cases.

{}: Nothing is done. Relevant data are assumed to be specified

by inclusion files.

0: Call of *sensorOff* is included.

1: Action follows setting of field *SENSOR_RESPONSE*.

SENSOR_LOS:

As the arts WSV with the same name.

SENSOR_POS:

As the arts WSV with the same name.

SENSOR_RESPONSE:

As the arts WSV with the same name. Three main options exist:

1: The first option is to specify each variable associated with

the sensor individually. This field can then be the name of a XML

file or a Matlab sparse matrix. Other fields that must be

specified for this option include: ANTENNA_DIM, MBLOCK_ZA/AA_GRID

and SENSOR_RESPONSE_F/ZA/AA/POL.

2: The name of control files to include (ARTS_INCLUDES

recognised). Given as an array of strings.

3: Calculate the response from basic data. This field shall then

be a structure, following the definitions in *qartsSensor*. Type

’qinfo(@qartsSensor);’ for definition of required data

fields.Other fields that must/may be specified here include

ANTENNA_DIM and MBLOCK_ZA/AA_GRID.

SENSOR_RESPONSE_AA:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_AA_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_F:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_F_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_POL:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a Matlab

variable.

SENSOR_RESPONSE_POL_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a Matlab

variable.

SENSOR_RESPONSE_ZA:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_ZA_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_TIME:

As the arts WSV with the same name.

SINEFIT:

Structure for specification of sinusoidal baseline fits. No

retrieval ismade if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddSinefit*. All

no_xxx_variation arguments of the WSM are set to default value.

The different period lengths are assumed to be uncorrelated. These

sub-fields are defined:

<RETRIEVE> Flag to activate retrieval

<PERIODS> Period lengths of the fit.

<SX1> Covariance matrix of a priori knowledge for coefficients of

first period length. This is applied as the covariance for both

the sine and cosine term, assuming that the two terms are

uncorrelated. That is, for single spectra retrievals, SX1 is a

scalar, giving the variance for both a and b, where the baseline

is modelled as a*sin(...)+b*cos(...). There shall be such a matrix

for each period length until:

<SXn> Covariance matrix of a priori knowledge for last period

length. The last required covariance matrix.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved baseline variables will

be included in the L2 output. Otherwise not. This field has no

importance if RETRIEVE is false.

STOKES_DIM:

As the arts WSV with the same name.

SURFACE_RTPROP_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

T:

Data and setting associated with atmospheric temperatures.

Normally used when retrieving temperature. Otherwise, *T_FIELD*

can be set directly.

<ATMDATA> The input shall follow the atmdata format, defined in

isatmdata. The data specified here are not directly given to

arts, it can only be used to set-up *T_FIELD*. This step is

handled by *qarts_atm_field*. The main usage of this field should

be to import data of climatology character. Can be given as a

variable or a file saved through *gf_save*. This field is

recognised and used automatically by Qpack2.

<RETRIEVE> If set to true, atmospheric temperatures are

retrieved.

<GRIDS> Retrieval grids for temperature. An array of vectors of

length 3: {p_grid,lat_grid,lon_grid}. Grids for dimensions not

used shall be empty.

<SX> Covariance matrix of a priori knowledge for temperature. Size

must match the grid field. Data must match <UNIT>. A matrix, that

can be sparse.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved state for temperature

will be included in the L2 output. Otherwise not.

<L2_RANGE> As the same field for ABS_SPECIES.

<MINMAX> Min and max allowed value for retrievals. Works exactly

as for ABS_SPECIES.

<HSE> As the argument to *jacobianAddTemperature* with same name.

Default here is "on". This refers only to the actual jacobian

calculation. If the atmosphere itself fulfils HSE or not is

controlled by Q.HSE.

<METHOD> As the argument to *jacobianAddTemperature* with same

name. Default here is "analytical".

<DT> As the argument to *jacobianAddTemperature* with same name.

Default here is 1 K.

None of the fields are mandatory for pure forward calculations. If

RETRIEVAL is set to false, the other retrieval related fields are

ignored.

T_FIELD:

As the arts WSV with the same name. Will replace temperature data

inserted through RAW_ATMOSPHERE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

TNOISE_C:

Thermal noise correlation. A matrix (sparse preferably) giving the

correlation of thermal noise between channels. Hence, the diagonal

elements shall all be one. If the thermal noise is the same for

all channels and has a standard deviation of s, the covariance

matrix is s*s*TNOISE_C.

TRANSMITTER_POS:

As the arts WSV with the same name.

VMR_NEGATIVE_OK:

Corresponds directly to the argument *negative_vmr_ok* of

atmfields_checkedCalc. Default is false, and only needed if you

want to the flag to true.

VMR_FIELD:

As the arts WSV with the same name. Will replace VMR data inserted

through RAW_ATMOSPHERE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

For retrievals, the a priori state for *ABS_SPECIES* is

determined by this field.

WIND_U:

Data and settings associated with the u-component of winds.

Normally used when retrieving winds. Otherwise, *WIND_U_FIELD* can

be set directly.

<ATMDATA> The input shall follow the atmdata format, defined in

isatmdata. The data specified here are not directly given to

arts, it can only be used to set-up *WIND_U_FIELD*. This step is

handled by *qarts_atm_field*. The main usage of this field should

be to import data of climatology character. Can be given as a

variable or a file saved through *gf_save*. This field is

recognised and used automatically by Qpack2.

<RETRIEVE> If set to true, this atmospheric wind is retrieved.

<GRIDS> Retrieval grids for the wind. An array of vectors of

length 3: {p_grid,lat_grid,lon_grid}. Grids for dimensions not

used shall be empty.

<SX> Covariance matrix of a priori knowledge for temperature. Size

must match the grid field. Data must match <UNIT>. A matrix, that

can be sparse.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved state for this wind

component will be included in the L2 output. Otherwise not.

<L2_RANGE> As the same field for ABS_SPECIES.

None of the fields are mandatory for pure forward calculations. If

RETRIEVAL is set to false, the other retrieval related fields are

ignored.

WIND_U_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

WIND_V:

Data and settings associated with the v-component of winds.

Defined as WIND_U, and the details are nor repeated here.

WIND_V_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

WIND_W:

Data and settings associated with the w-component of winds.

Defined as WIND_U, and the details are nor repeated here.

WIND_W_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

WSMS_AT_END:

Workspace method calls to include at the far end of the control

file. Format and options as for WSMS_AT_START.

WSMS_AT_START:

Workspace method calls to include at the top of the control file.

These calls are only preceded by possible settings set by

INCLUDES.

Method calls are specified as an cell array of strings. For

example, if no inclusion files are used, these calls could be

useful to include

{ ’VectorSet(abs_n2,[0.7808])’, ’abs_cont_descriptionInit’ }

A simple if/else/end feature is supported, with the format shown

below. The argument to the if-statement must be a field of Q that

is a boolean. Nested if-statements are not allowed. An example:

<IF> J_DO

(something)

<ELSE>

(something else)

<END>

That is, <IF>, <ELSE> and <END> are used as identifiers. The

identifiers must start the line. For <ELSE> and <END>, the rest of

the line must be empty.

WSMS_BEFORE_ATMSURF:

Workspace method calls to include just before setting up the

atmosphere and the surface. That is, before consider e.g.

Q.P_GRID, Q.T_FIELD, Q.Z_SURFACE. Format and options as for

WSMS_AT_START.

WSMS_BEFORE_RTE:

Workspace method calls to include just before execution of

YCALC_WSMS or batch core part. Accordingly, this field is

considered only if spectra are calculated (ignored for e.g. pure

absorption calculations). Format and options as for WSMS_AT_START.

YCALC_WSMS:

Workspace method calls for performing radiative transfer

calculations. The standard choice should be that this fields

includes a call of *yCalc*. There is no clear division between

this field and *WSMS_BEFORE_RTE*, but for best flexibility this

field should start with *yCalc* (or corresponding method),

followed by post-processing not handled by other fields.

Accordingly, this field is considered only if spectra are

calculated (ignored for e.g. pure absorption calculations). Format

and options as for WSMS_AT_START.

Z:

Data and settings associated with Z_FIELD. Has the same role as T

with respect to T_FIELD, but as there are no retrievals associated

with Z there is only one sub-field here:

<ATMDATA> The input shall follow the atmdata format, defined in

isatmdata. The data specified here are not directly given to

arts, it can only be used to set-up *Z_FIELD*. This step is

handled by *qarts_atm_field*. The main usage of this field should

be to import data of climatology character. Can be given as a

variable or a file saved through *gf_save*. This field is

recognised and used automatically by Qpack2.

Z_FIELD:

As the arts WSV with the same name. Will replace altitude data

inserted through RAW_ATMOSPHERE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

Z_SURFACE:

Surface altitude (above reference ellipsoid). As the arts WSV with

the same name.

C The fields of O

The information below is obtained in Atmlab by typing:

>> qinfo(@oem)

A:

Flag to include averaging kernel matrix in X. Default is 0.

cost:

Flag to include cost values in X and to calculate cost even if

solution method does not require cost values. This affects also

the output to *outfids*.

dx:

Flag to include the sequence of convergence values (defined as for

stop_dx).

e:

Flag to include in X the estimate of total retrieval error

(square root of diagonal elements of S). That is, the standard

deviation for the sum of observation and smoothing errors.

eo:

Flag to include in X the estimate of observation error (square

root of diagonal elements of So).

es:

Flag to include in X the estimate of smootning error (square root

of diagonal elements of Ss).

ex:

Flag to include in X the a priori uncertainty (square root of

diagonal elements of Sx).

G:

Flag to include gain matrix in X (alse denoted as Dy).

ga:

Flag to include Marquardt-Levenberg parameter in X. Default is 0.

ga_factor_not_ok:

The factor with which the Marquardt-Levenberg factor is increased

when not a lower cost value is obtained. This starts a new

sub-teration. This value must be > 1.

ga_factor_ok:

The factor with which the Marquardt-Levenberg factor is decreased

after a lower cost values has been reached. This value must be >

1.

ga_max:

Maximum value for gamma factor for the Marquardt-Levenberg method.

The stops if this value is reached and cost value is still not

decreased. This value must be > 0.

ga_start:

Start value for gamma factor for the Marquardt-Levenberg method.

Type:

help oem

for a definition of the gamma factor. This value must be >= 0.

itermethod:

Iteration method. Choices are ’GN’ for Gauss-Newton and ’ML’

or’LM’ for Marquardt-Levenberg.

J:

Flag to include weighting function matrix in X.

jexact:

Flag to select recalculation of J after last iteration. If not set

to 1, J will correspond to x before last iteration. Also used for

the linear case.

jfast:

Flag to always calculate the Jacobian in parallel to the spectrum.

This field is only used for the Marquardt-Levenberg case. This

option can save time if the calculation of the Jacobian is very

fast and the convergence is smooth (few cases where ga has to be

increased). The advanatge of this option is that the next

iteration can be started without a call of the forward model.

linear:

Flag to trigger a linear inversion. Fields like itermethod are

ignored if this option is selected. Default is non-linear (0).

maxiter:

Maximum number of iterations.

msg:

Message to put at the start of output messages. Can include e.g.

number of retrieval case.

outfids:

File identifiers for output messages. Inlcude 1 for the screen.

Set to [] for no output att all.

S:

Flag to include covariance matrix for total error in X. That is,

the sum of So and Ss.

So:

Flag to include covariance matrix for observation error in X.

Ss:

Flag to include covariance matrix for smoothing error in X.

stop_dx:

Stop criterion. The iteration is halted when the change in x is <

stop_dx (see Eq. 5.29 in Rodgers’ book). A normalisation to the

length of x is applied.

sxnorm:

Flag to internally perform a normalisation of x, based on the

diagonal elements of Sx. Numerical problems can occur when the

retrieved values differ strongly in magnitude (due to poor

condition number for matrix inversions). This flag can be used to

overcome this problem.

The inverse of Sx must be calculated internally if this option is

used and there is no use in pre-calculating *Sxinv*.

yf:

Flag to include "fitted spectrum" in X. That is, the simulated

measurement matching retrieved state.

Xiter:

Flag to include all iteration states in X.

D The fields of Y

The information below is obtained in Atmlab by typing:

>> qinfo(@qp2_y)

AA:

Line-of-sight azimuth angle for the measurement. Only considered

if ATMOSPERE_DIM set to 3. A scalar value, or a vector. See

further *ZA*.

DAY:

Measurement time information. All these fields (YEAR, MONTH, ...)

are numeric scalars. This information is primarily used to extract

data from the climatology databases.

F:

Frequency for each value of Y. Not required information. Qpack2

uses this field only for consistency checks.

HOUR:

Optional data. Allows a more detailed specification of measurement

time. Otherwise as field DAY.

HSE_P:

The reference point when enforcing hydrostatic equilibrium. The

geometrical altitude (HSE_Z) is given for one presssure (HSE_P).

HSE_Z:

The reference point when enforcing hydrostatic equilibrium. The

geometrical altitude (HSE_Z) is given for one presssure (HSE_P).

LATITUDE:

The geographical position of the measurement.

LONGITUDE:

The geographical position of the measurement.

MINUTE:

Optional data. Allows a more detailed specification of measurement

time. Otherwise as field DAY.

MONTH:

Measurement time information. All these fields (YEAR, MONTH, ...)

are numeric scalars. This information is primarily used to extract

data from the climatology databases.

SECOND:

Optional data. Allows a more detailed specification of measurement

time. Otherwise as field DAY.

TNOISE:

Magnitude of thermal noise, given as 1 standard devation. A scalar

or a column vector having the same length as y. If a scalar, the

value is applied for all spectrometer channels. If the measurement

consists of several spectra (see *ZA*), this field must be a

matrix (or row vector) where the columns give the noise for each

spectrum.

Y:

The spectrum.

YEAR:

Measurement time information. All these fields (YEAR, MONTH, ...)

are numeric scalars. This information is primarily used to extract

data from the climatology databases.

ZA:

Line-of-sight zenith angle for the measurement. A scalar value, or

a vector. The fields *Z_PLATFORM* and *ZA*, as well as *AA* for 3D

case, must have the same size. IF these fields have a length > 1,

the measurement will consist of several spectra (having same *LAT*

and *LON). IN ARTS, these spectra are simulated as seperate

measurement blocks. Further, *TNOISE* must have a matching size,

where the numbers of columns shall match length of *ZA*.

Z_PLATFORM:

Altitude (above geoid) of observation platform. A scalar value, or

a vector. See further *ZA*.

