FullyConnected
- class typhon.retrieval.qrnn.models.keras.FullyConnected(*args, **kwargs)[source]
- Keras implementation of fully-connected networks. - __init__(input_dimension, quantiles, arch, layers=None)[source]
- Create a fully-connected neural network. - Parameters:
- input_dimension ( - int) – Number of input features
- quantiles ( - array) – The quantiles to predict given as fractions within [0, 1].
- arch (tuple) – Tuple - (d, w, a)containing- d, the number of hidden layers in the network,- w, the width of the network and- a, the type of activation functions to be used as string.
 
 
 - Methods - __init__(input_dimension, quantiles, arch[, ...])- Create a fully-connected neural network. - add(layer)- Adds a layer instance on top of the layer stack. - add_loss(losses, **kwargs)- Add loss tensor(s), potentially dependent on layer inputs. - add_metric(value[, name])- Adds metric tensor to the layer. - add_update(updates)- Add update op(s), potentially dependent on layer inputs. - add_variable(*args, **kwargs)- Deprecated, do NOT use! Alias for add_weight. - add_weight([name, shape, dtype, ...])- Adds a new variable to the layer. - build([input_shape])- Builds the model based on input shapes received. - build_from_config(config)- Builds the layer's states with the supplied config dict. - call(inputs[, training, mask])- Calls the model on new inputs. - compile([optimizer, loss, metrics, ...])- Configures the model for training. - compile_from_config(config)- Compiles the model with the information given in config. - compute_loss([x, y, y_pred, sample_weight])- Compute the total loss, validate it, and return it. - compute_mask(inputs, mask)- Computes an output mask tensor. - compute_metrics(x, y, y_pred, sample_weight)- Update metric states and collect all metrics to be returned. - compute_output_shape(input_shape)- Computes the output shape of the layer. - compute_output_signature(input_signature)- Compute the output tensor signature of the layer based on the inputs. - Count the total number of scalars composing the weights. - evaluate([x, y, batch_size, verbose, ...])- Returns the loss value & metrics values for the model in test mode. - evaluate_generator(generator[, steps, ...])- Evaluates the model on a data generator. - export(filepath)- Create a SavedModel artifact for inference (e.g. via TF-Serving). - Finalizes the layers state after updating layer weights. - fit([x, y, batch_size, epochs, verbose, ...])- Trains the model for a fixed number of epochs (dataset iterations). - fit_generator(generator[, steps_per_epoch, ...])- Fits the model on data yielded batch-by-batch by a Python generator. - from_config(config[, custom_objects])- Creates a layer from its config. - Returns a dictionary with the layer's input shape. - Returns a serialized config with information for compiling the model. - Returns the config of the Model. - get_input_at(node_index)- Retrieves the input tensor(s) of a layer at a given node. - get_input_mask_at(node_index)- Retrieves the input mask tensor(s) of a layer at a given node. - get_input_shape_at(node_index)- Retrieves the input shape(s) of a layer at a given node. - get_layer([name, index])- Retrieves a layer based on either its name (unique) or index. - Returns the model's metrics values as a dict. - get_output_at(node_index)- Retrieves the output tensor(s) of a layer at a given node. - get_output_mask_at(node_index)- Retrieves the output mask tensor(s) of a layer at a given node. - get_output_shape_at(node_index)- Retrieves the output shape(s) of a layer at a given node. - Retrieve all the variables and their paths for the model. - Retrieves the weights of the model. - load_own_variables(store)- Loads the state of the layer. - load_weights(filepath[, skip_mismatch, ...])- Loads all layer weights from a saved files. - make_predict_function([force])- Creates a function that executes one step of inference. - make_test_function([force])- Creates a function that executes one step of evaluation. - make_train_function([force])- Creates a function that executes one step of training. - pop()- Removes the last layer in the model. - predict(x[, batch_size, verbose, steps, ...])- Generates output predictions for the input samples. - predict_generator(generator[, steps, ...])- Generates predictions for the input samples from a data generator. - Returns predictions for a single batch of samples. - predict_step(data)- The logic for one inference step. - reset()- Reinitialize the state of the model. - Resets the state of all the metrics in the model. - save(filepath[, overwrite, save_format])- Saves a model as a TensorFlow SavedModel or HDF5 file. - save_own_variables(store)- Saves the state of the layer. - save_spec([dynamic_batch])- Returns the tf.TensorSpec of call args as a tuple (args, kwargs). - save_weights(filepath[, overwrite, ...])- Saves all layer weights. - set_weights(weights)- Sets the weights of the layer, from NumPy arrays. - summary([line_length, positions, print_fn, ...])- Prints a string summary of the network. - test_on_batch(x[, y, sample_weight, ...])- Test the model on a single batch of samples. - test_step(data)- The logic for one evaluation step. - to_json(**kwargs)- Returns a JSON string containing the network configuration. - to_yaml(**kwargs)- Returns a yaml string containing the network configuration. - train(training_data[, validation_data, ...])- train_on_batch(x[, y, sample_weight, ...])- Runs a single gradient update on a single batch of data. - train_step(data)- The logic for one training step. - with_name_scope(method)- Decorator to automatically enter the module name scope. - Attributes - activity_regularizer- Optional regularizer function for the output of this layer. - autotune_steps_per_execution- Settable property to enable tuning for steps_per_execution - compute_dtype- The dtype of the layer's computations. - distribute_reduction_method- The method employed to reduce per-replica values during training. - distribute_strategy- The tf.distribute.Strategy this model was created under. - dtype- The dtype of the layer weights. - dtype_policy- The dtype policy associated with this layer. - dynamic- Whether the layer is dynamic (eager-only); set in the constructor. - inbound_nodes- Return Functional API nodes upstream of this layer. - input- Retrieves the input tensor(s) of a layer. - input_mask- Retrieves the input mask tensor(s) of a layer. - input_shape- Retrieves the input shape(s) of a layer. - input_spec- InputSpec instance(s) describing the input format for this layer. - jit_compile- Specify whether to compile the model with XLA. - layers- losses- List of losses added using the add_loss() API. - metrics- Return metrics added using compile() or add_metric(). - metrics_names- Returns the model's display labels for all outputs. - name- Name of the layer (string), set in the constructor. - name_scope- Returns a tf.name_scope instance for this class. - non_trainable_variables- Sequence of non-trainable variables owned by this module and its submodules. - non_trainable_weights- List of all non-trainable weights tracked by this layer. - outbound_nodes- Return Functional API nodes downstream of this layer. - output- Retrieves the output tensor(s) of a layer. - output_mask- Retrieves the output mask tensor(s) of a layer. - output_shape- Retrieves the output shape(s) of a layer. - run_eagerly- Settable attribute indicating whether the model should run eagerly. - state_updates- Deprecated, do NOT use! - stateful- steps_per_execution- Settable `steps_per_execution variable. Requires a compiled model. - submodules- Sequence of all sub-modules. - supports_masking- Whether this layer supports computing a mask using compute_mask. - trainable- trainable_variables- Sequence of trainable variables owned by this module and its submodules. - trainable_weights- List of all trainable weights tracked by this layer. - updates- variable_dtype- Alias of Layer.dtype, the dtype of the weights. - variables- Returns the list of all layer variables/weights. - weights- Returns the list of all layer variables/weights.