UNet
- class typhon.retrieval.qrnn.models.pytorch.UNet(input_features, quantiles, n_features=32, n_levels=4, skip_connection=None)[source]
- Pytorch implementation of the UNet architecture for image segmentation. - __init__(input_features, quantiles, n_features=32, n_levels=4, skip_connection=None)[source]
- Parameters:
- input_features ( - int) – The number of channels of the input image.
- quantiles ( - np.array) – Array containing the quantiles to predict.
- n_features – The number of channels of the first convolution block. 
- n_level – The number of down-sampling steps. 
- skip_connection – Whether or not to include skip connections in each block. 
 
 
 - Methods - __init__(input_features, quantiles[, ...])- param input_features:
- The number of channels of the input image. 
 - add_module(name, module)- Adds a child module to the current module. - apply(fn)- Applies - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Returns an iterator over module buffers. - calibration(data[, gpu])- Computes the calibration of the predictions from the neural network. - children()- Returns an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Moves all model parameters and buffers to the CPU. - cuda([device])- Moves all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Sets the module in evaluation mode. - Set the extra representation of the module - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(x)- Propagate input through layer. - get_buffer(target)- Returns the buffer given by - targetif it exists, otherwise throws an error.- Returns any extra state to include in the module's state_dict. - get_parameter(target)- Returns the parameter given by - targetif it exists, otherwise throws an error.- get_submodule(target)- Returns the submodule given by - targetif it exists, otherwise throws an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Moves all model parameters and buffers to the IPU. - load(self, path)- Load QRNN from file. - load_state_dict(state_dict[, strict, assign])- Copies parameters and buffers from - state_dictinto this module and its descendants.- modules()- Returns an iterator over all modules in the network. - named_buffers([prefix, recurse, ...])- Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Returns an iterator over module parameters. - predict(x[, gpu])- register_backward_hook(hook)- Registers a backward hook on the module. - register_buffer(name, tensor[, persistent])- Adds a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Registers a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Registers a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Registers a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Registers a backward pre-hook on the module. - Registers a post hook to be run after module's - load_state_dictis called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Adds a parameter to the module. - These hooks will be called with arguments: - self,- prefix, and- keep_varsbefore calling- state_dicton- self.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - reset()- Reinitializes the weights of a model. - save(path)- Save QRNN to file. - set_extra_state(state)- This function is called from - load_state_dict()to handle any extra state found within the state_dict.- See - torch.Tensor.share_memory_()- state_dict(*args[, destination, prefix, ...])- Returns a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Moves and/or casts the parameters and buffers. - to_empty(*, device[, recurse])- Moves the parameters and buffers to the specified device without copying storage. - train(*args, **kwargs)- Train the network. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Moves all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Resets gradients of all model parameters. - Attributes - T_destination- call_super_init- dump_patches- training