SPAREICE
- class typhon.retrieval.spareice.SPAREICE(file=None, collocator=None, processes=10, verbose=0, sea_mask_file=None, elevation_file=None)[source]
- Retrieval of IWP from passive radiometers - Examples: .. code-block:: python - import pandas as pd from typhon.retrieval import SPAREICE - # Create a SPARE-ICE object with the standard weights spareice = SPAREICE() - # Print the required input fields print(spareice.inputs) - # If you want to know the input fields for the each component, IWP # regressor and ice cloud classifier, you can get them like this: print(spareice.iwp.inputs) # Inputs from IWP regressor print(spareice.ice_cloud.inputs) # Inputs from ice cloud classifier - # If you have yur own input data, you can use - retrieve()to run # SPARE-ICE on it. data = pd.DataFrame(…) retrieved = spareice.retrieve(data)- # If your data directly comes from collocations between MHS and AVHRR, # you can use : - convert_collocated_data()to make it SPARE-ICE # compatible. collocations = Collocator().collocate(mhs_data, avhrr_data, …) standardized_data = self.standardize_collocations(collocations) retrieved = spareice.retrieve(standardized_data)- __init__(file=None, collocator=None, processes=10, verbose=0, sea_mask_file=None, elevation_file=None)[source]
- Initialize a SPAREICE object - Parameters:
- file – A JSON file with the coefficients of SPAREICE. If not given, the standard configuration will be loaded. 
- collocator – SPARE-ICE requires a collocator when it should be generated from filesets. You can pass your own - Collocatorobject here if you want.
- processes – Number of processes to parallelize the training or collocation search. 10 is the default. Best value depends on your machine. 
- verbose (int) – Control - GridSearchCVverbosity. The higher the
- value 
- printed. (the more debug messages are) 
 
 
 - Methods - __init__([file, collocator, processes, ...])- Initialize a SPAREICE object - load(filename)- Load SPARE-ICE from a json file - report(output_dir, experiment, data)- Test the performance of SPARE-ICE and plot it - retrieve(data[, as_log10])- Retrieve SPARE-ICE for the input variables - retrieve_from_collocations(inputs, output[, ...])- Retrieve SPARE-ICE from collocations between MHS and AVHRR - save(filename)- Save SPARE-ICE to a json file - score(data)- Calculate the score of SPARE-ICE on testing data - standardize_collocations(data[, fields, ...])- Convert collocation fields to standard SPARE-ICE fields. - train(data[, iwp_inputs, ice_cloud_inputs, ...])- Train SPARE-ICE with data - Attributes - ice_cloud- Return the ice cloud classifier of SPARE-ICE - inputs- Return the input fields of the current configuration - iwp- Return the IWP regressor of SPARE-ICE