FullyConnected
- class typhon.retrieval.qrnn.models.pytorch.FullyConnected(input_dimension, quantiles, arch)[source]
- Pytorch implementation of a fully-connected QRNN model. - __init__(input_dimension, quantiles, arch)[source]
- Create a fully-connected neural network. - Parameters:
- input_dimension ( - int) – Number of input features
- quantiles ( - array) – The quantiles to predict given as fractions within [0, 1].
- arch (tuple) – Tuple - (d, w, a)containing- d, the number of hidden layers in the network,- w, the width of the network and- a, the type of activation functions to be used as string.
 
 
 - Methods - __init__(input_dimension, quantiles, arch)- Create a fully-connected neural network. - add_module(name, module)- Add a child module to the current module. - append(module)- Append a given module to the end. - apply(fn)- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Return an iterator over module buffers. - calibration(data[, gpu])- Computes the calibration of the predictions from the neural network. - children()- Return an iterator over immediate children modules. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Move all model parameters and buffers to the CPU. - cuda([device])- Move all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Set the module in evaluation mode. - extend(sequential)- Set the extra representation of the module. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(input)- Define the computation performed at every call. - get_buffer(target)- Return the buffer given by - targetif it exists, otherwise throw an error.- Return any extra state to include in the module's state_dict. - get_parameter(target)- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule(target)- Return the submodule given by - targetif it exists, otherwise throw an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- insert(index, module)- ipu([device])- Move all model parameters and buffers to the IPU. - load(self, path)- Load QRNN from file. - load_state_dict(state_dict[, strict, assign])- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules()- Return an iterator over all modules in the network. - named_buffers([prefix, recurse, ...])- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Return an iterator over module parameters. - pop(key)- predict(x[, gpu])- register_backward_hook(hook)- Register a backward hook on the module. - register_buffer(name, tensor[, persistent])- Add a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Register a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Register a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Register a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Register a backward pre-hook on the module. - Register a post hook to be run after module's - load_state_dictis called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Add a parameter to the module. - Register a pre-hook for the - state_dict()method.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - reset()- Reinitializes the weights of a model. - save(path)- Save QRNN to file. - set_extra_state(state)- Set extra state contained in the loaded state_dict. - See - torch.Tensor.share_memory_().- state_dict(*args[, destination, prefix, ...])- Return a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Move and/or cast the parameters and buffers. - to_empty(*, device[, recurse])- Move the parameters and buffers to the specified device without copying storage. - train(*args, **kwargs)- Train the network. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Move all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Reset gradients of all model parameters. - Attributes - T_destination- call_super_init- dump_patches- training