broadcast_like
- UnitsAwareDataArray.broadcast_like(other: T_DataArrayOrSet, *, exclude: Iterable[Hashable] | None = None) Self
- Broadcast this DataArray against another Dataset or DataArray. - This is equivalent to xr.broadcast(other, self)[1] - xarray objects are broadcast against each other in arithmetic operations, so this method is not be necessary for most uses. - If no change is needed, the input data is returned to the output without being copied. - If new coords are added by the broadcast, their values are NaN filled. - Parameters:
- other (Dataset or DataArray) – Object against which to broadcast this array. 
- exclude (iterable of Hashable, optional) – Dimensions that must not be broadcasted 
 
- Returns:
- new_da – The caller broadcasted against - other.
- Return type:
- DataArray 
 - Examples - >>> arr1 = xr.DataArray( ... np.random.randn(2, 3), ... dims=("x", "y"), ... coords={"x": ["a", "b"], "y": ["a", "b", "c"]}, ... ) >>> arr2 = xr.DataArray( ... np.random.randn(3, 2), ... dims=("x", "y"), ... coords={"x": ["a", "b", "c"], "y": ["a", "b"]}, ... ) >>> arr1 <xarray.DataArray (x: 2, y: 3)> Size: 48B array([[ 1.76405235, 0.40015721, 0.97873798], [ 2.2408932 , 1.86755799, -0.97727788]]) Coordinates: * x (x) <U1 8B 'a' 'b' * y (y) <U1 12B 'a' 'b' 'c' >>> arr2 <xarray.DataArray (x: 3, y: 2)> Size: 48B array([[ 0.95008842, -0.15135721], [-0.10321885, 0.4105985 ], [ 0.14404357, 1.45427351]]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' * y (y) <U1 8B 'a' 'b' >>> arr1.broadcast_like(arr2) <xarray.DataArray (x: 3, y: 3)> Size: 72B array([[ 1.76405235, 0.40015721, 0.97873798], [ 2.2408932 , 1.86755799, -0.97727788], [ nan, nan, nan]]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' * y (y) <U1 12B 'a' 'b' 'c'