UnitsAwareDataArray
- class typhon.physics.units.tools.UnitsAwareDataArray(data: ~typing.Any = <NA>, coords: ~collections.abc.Sequence[~collections.abc.Sequence | ~pandas.core.indexes.base.Index | ~xarray.core.dataarray.DataArray] | ~collections.abc.Mapping | None = None, dims: str | ~collections.abc.Iterable[~collections.abc.Hashable] | None = None, name: ~collections.abc.Hashable | None = None, attrs: ~collections.abc.Mapping | None = None, indexes: ~collections.abc.Mapping[~typing.Any, ~xarray.core.indexes.Index] | None = None, fastpath: bool = False)[source]
- Like xarray.DataArray, but transfers units - __init__(data: ~typing.Any = <NA>, coords: ~collections.abc.Sequence[~collections.abc.Sequence | ~pandas.core.indexes.base.Index | ~xarray.core.dataarray.DataArray] | ~collections.abc.Mapping | None = None, dims: str | ~collections.abc.Iterable[~collections.abc.Hashable] | None = None, name: ~collections.abc.Hashable | None = None, attrs: ~collections.abc.Mapping | None = None, indexes: ~collections.abc.Mapping[~typing.Any, ~xarray.core.indexes.Index] | None = None, fastpath: bool = False) None
 - Methods - __init__([data, coords, dims, name, attrs, ...])- all([dim, keep_attrs])- Reduce this DataArray's data by applying - allalong some dimension(s).- any([dim, keep_attrs])- Reduce this DataArray's data by applying - anyalong some dimension(s).- argmax([dim, axis, keep_attrs, skipna])- Index or indices of the maximum of the DataArray over one or more dimensions. - argmin([dim, axis, keep_attrs, skipna])- Index or indices of the minimum of the DataArray over one or more dimensions. - argsort([axis, kind, order])- Returns the indices that would sort this array. - as_numpy()- Coerces wrapped data and coordinates into numpy arrays, returning a DataArray. - assign_attrs(*args, **kwargs)- Assign new attrs to this object. - assign_coords([coords])- Assign new coordinates to this object. - astype(dtype, *[, order, casting, subok, ...])- Copy of the xarray object, with data cast to a specified type. - bfill(dim[, limit])- Fill NaN values by propagating values backward - broadcast_equals(other)- Two DataArrays are broadcast equal if they are equal after broadcasting them against each other such that they have the same dimensions. - broadcast_like(other, *[, exclude])- Broadcast this DataArray against another Dataset or DataArray. - chunk([chunks, name_prefix, token, lock, ...])- Coerce this array's data into a dask arrays with the given chunks. - clip([min, max, keep_attrs])- Return an array whose values are limited to - [min, max].- close()- Release any resources linked to this object. - coarsen([dim, boundary, side, coord_func])- Coarsen object for DataArrays. - combine_first(other)- Combine two DataArray objects, with union of coordinates. - compute(**kwargs)- Manually trigger loading of this array's data from disk or a remote source into memory and return a new array. - conj()- Complex-conjugate all elements. - Return the complex conjugate, element-wise. - convert_calendar(calendar[, dim, align_on, ...])- Convert the DataArray to another calendar. - copy([deep, data])- Returns a copy of this array. - count([dim, keep_attrs])- Reduce this DataArray's data by applying - countalong some dimension(s).- cumprod([dim, skipna, keep_attrs])- Reduce this DataArray's data by applying - cumprodalong some dimension(s).- cumsum([dim, skipna, keep_attrs])- Reduce this DataArray's data by applying - cumsumalong some dimension(s).- cumulative(dim[, min_periods])- Accumulating object for DataArrays. - cumulative_integrate([coord, datetime_unit])- Integrate cumulatively along the given coordinate using the trapezoidal rule. - curvefit(coords, func[, reduce_dims, ...])- Curve fitting optimization for arbitrary functions. - diff(*args, **kwargs)- Calculate the n-th order discrete difference along given axis. - differentiate(coord[, edge_order, datetime_unit])- Differentiate the array with the second order accurate central differences. - dot(other[, dim])- Perform dot product of two DataArrays along their shared dims. - drop([labels, dim, errors])- Backward compatible method based on drop_vars and drop_sel - drop_duplicates(dim, *[, keep])- Returns a new DataArray with duplicate dimension values removed. - Return a new DataArray without encoding on the array or any attached coords. - drop_indexes(coord_names, *[, errors])- Drop the indexes assigned to the given coordinates. - drop_isel([indexers])- Drop index positions from this DataArray. - drop_sel([labels, errors])- Drop index labels from this DataArray. - drop_vars(names, *[, errors])- Returns an array with dropped variables. - dropna(dim, *[, how, thresh])- Returns a new array with dropped labels for missing values along the provided dimension. - equals(other)- True if two DataArrays have the same dimensions, coordinates and values; otherwise False. - expand_dims([dim, axis, ...])- Return a new object with an additional axis (or axes) inserted at the corresponding position in the array shape. - ffill(dim[, limit])- Fill NaN values by propagating values forward - fillna(value)- Fill missing values in this object. - from_dict(d)- Convert a dictionary into an xarray.DataArray - from_iris(cube)- Convert a iris.cube.Cube into an xarray.DataArray - from_series(series[, sparse])- Convert a pandas.Series into an xarray.DataArray. - get_axis_num(dim)- Return axis number(s) corresponding to dimension(s) in this array. - get_index(key)- Get an index for a dimension, with fall-back to a default RangeIndex - groupby(group[, squeeze, restore_coord_dims])- Returns a DataArrayGroupBy object for performing grouped operations. - groupby_bins(group, bins[, right, labels, ...])- Returns a DataArrayGroupBy object for performing grouped operations. - head([indexers])- Return a new DataArray whose data is given by the the first n values along the specified dimension(s). - identical(other)- Like equals, but also checks the array name and attributes, and attributes on all coordinates. - idxmax([dim, skipna, fill_value, keep_attrs])- Return the coordinate label of the maximum value along a dimension. - idxmin([dim, skipna, fill_value, keep_attrs])- Return the coordinate label of the minimum value along a dimension. - integrate([coord, datetime_unit])- Integrate along the given coordinate using the trapezoidal rule. - interp([coords, method, assume_sorted, kwargs])- Interpolate a DataArray onto new coordinates - interp_calendar(target[, dim])- Interpolates the DataArray to another calendar based on decimal year measure. - interp_like(other[, method, assume_sorted, ...])- Interpolate this object onto the coordinates of another object, filling out of range values with NaN. - interpolate_na([dim, method, limit, ...])- Fill in NaNs by interpolating according to different methods. - isel([indexers, drop, missing_dims])- Return a new DataArray whose data is given by selecting indexes along the specified dimension(s). - isin(test_elements)- Tests each value in the array for whether it is in test elements. - isnull([keep_attrs])- Test each value in the array for whether it is a missing value. - item(*args)- Copy an element of an array to a standard Python scalar and return it. - load(**kwargs)- Manually trigger loading of this array's data from disk or a remote source into memory and return this array. - map_blocks(func[, args, kwargs, template])- Apply a function to each block of this DataArray. - max([dim, skipna, keep_attrs])- Reduce this DataArray's data by applying - maxalong some dimension(s).- mean(*args, **kwargs)- Reduce this DataArray's data by applying - meanalong some dimension(s).- median(*args, **kwargs)- Reduce this DataArray's data by applying - medianalong some dimension(s).- min([dim, skipna, keep_attrs])- Reduce this DataArray's data by applying - minalong some dimension(s).- notnull([keep_attrs])- Test each value in the array for whether it is not a missing value. - pad([pad_width, mode, stat_length, ...])- Pad this array along one or more dimensions. - persist(**kwargs)- Trigger computation in constituent dask arrays - pipe(func, *args, **kwargs)- Apply - func(self, *args, **kwargs)- polyfit(dim, deg[, skipna, rcond, w, full, cov])- Least squares polynomial fit. - prod([dim, skipna, min_count, keep_attrs])- Reduce this DataArray's data by applying - prodalong some dimension(s).- quantile(q[, dim, method, keep_attrs, ...])- Compute the qth quantile of the data along the specified dimension. - query([queries, parser, engine, missing_dims])- Return a new data array indexed along the specified dimension(s), where the indexers are given as strings containing Python expressions to be evaluated against the values in the array. - rank(dim, *[, pct, keep_attrs])- Ranks the data. - reduce(func[, dim, axis, keep_attrs, keepdims])- Reduce this array by applying func along some dimension(s). - reindex([indexers, method, tolerance, copy, ...])- Conform this object onto the indexes of another object, filling in missing values with - fill_value.- reindex_like(other, *[, method, tolerance, ...])- Conform this object onto the indexes of another object, for indexes which the objects share. - rename([new_name_or_name_dict])- Returns a new DataArray with renamed coordinates, dimensions or a new name. - reorder_levels([dim_order])- Rearrange index levels using input order. - resample([indexer, skipna, closed, label, ...])- Returns a Resample object for performing resampling operations. - reset_coords([names, drop])- Given names of coordinates, reset them to become variables. - reset_index(dims_or_levels[, drop])- Reset the specified index(es) or multi-index level(s). - roll([shifts, roll_coords])- Roll this array by an offset along one or more dimensions. - rolling([dim, min_periods, center])- Rolling window object for DataArrays. - rolling_exp([window, window_type])- Exponentially-weighted moving window. - round(*args, **kwargs)- Round an array to the given number of decimals. - searchsorted(v[, side, sorter])- Find indices where elements of v should be inserted in a to maintain order. - sel([indexers, method, tolerance, drop])- Return a new DataArray whose data is given by selecting index labels along the specified dimension(s). - set_close(close)- Register the function that releases any resources linked to this object. - set_index([indexes, append])- Set DataArray (multi-)indexes using one or more existing coordinates. - set_xindex(coord_names[, index_cls])- Set a new, Xarray-compatible index from one or more existing coordinate(s). - shift([shifts, fill_value])- Shift this DataArray by an offset along one or more dimensions. - sortby(variables[, ascending])- Sort object by labels or values (along an axis). - squeeze([dim, drop, axis])- Return a new object with squeezed data. - stack([dim, create_index, index_cls])- Stack any number of existing dimensions into a single new dimension. - std([dim, skipna, ddof, keep_attrs])- Reduce this DataArray's data by applying - stdalong some dimension(s).- sum(*args, **kwargs)- Reduce this DataArray's data by applying - sumalong some dimension(s).- swap_dims([dims_dict])- Returns a new DataArray with swapped dimensions. - tail([indexers])- Return a new DataArray whose data is given by the the last n values along the specified dimension(s). - thin([indexers])- Return a new DataArray whose data is given by each n value along the specified dimension(s). - to(new_unit, *contexts, **kwargs)- Convert to other unit. - to_dask_dataframe([dim_order, set_index])- Convert this array into a dask.dataframe.DataFrame. - to_dataframe([name, dim_order])- Convert this array and its coordinates into a tidy pandas.DataFrame. - to_dataset([dim, name, promote_attrs])- Convert a DataArray to a Dataset. - to_dict([data, encoding])- Convert this xarray.DataArray into a dictionary following xarray naming conventions. - to_index()- Convert this variable to a pandas.Index. - to_iris()- Convert this array into a iris.cube.Cube - to_masked_array([copy])- Convert this array into a numpy.ma.MaskedArray - to_netcdf([path, mode, format, group, ...])- Write DataArray contents to a netCDF file. - to_numpy()- Coerces wrapped data to numpy and returns a numpy.ndarray. - Convert this array into a pandas object with the same shape. - Equivalent of pint's Quantity.to_root_units - Convert this array into a pandas.Series. - to_unstacked_dataset(dim[, level])- Unstack DataArray expanding to Dataset along a given level of a stacked coordinate. - to_zarr([store, chunk_store, mode, ...])- Write DataArray contents to a Zarr store - transpose(*dim[, transpose_coords, missing_dims])- Return a new DataArray object with transposed dimensions. - Unify chunk size along all chunked dimensions of this DataArray. - unstack([dim, fill_value, sparse])- Unstack existing dimensions corresponding to MultiIndexes into multiple new dimensions. - var([dim, skipna, ddof, keep_attrs])- Reduce this DataArray's data by applying - varalong some dimension(s).- weighted(weights)- Weighted DataArray operations. - where(cond[, other, drop])- Filter elements from this object according to a condition. - Attributes - T- attrs- Dictionary storing arbitrary metadata with this array. - chunks- Tuple of block lengths for this dataarray's data, in order of dimensions, or None if the underlying data is not a dask array. - chunksizes- Mapping from dimension names to block lengths for this dataarray's data, or None if the underlying data is not a dask array. - coords- Mapping of - DataArrayobjects corresponding to coordinate variables.- data- The DataArray's data as an array. - dims- Tuple of dimension names associated with this array. - dt- alias of - CombinedDatetimelikeAccessor[- DataArray]- dtype- Data-type of the array’s elements. - encoding- Dictionary of format-specific settings for how this array should be serialized. - imag- The imaginary part of the array. - indexes- Mapping of pandas.Index objects used for label based indexing. - loc- Attribute for location based indexing like pandas. - name- The name of this array. - nbytes- Total bytes consumed by the elements of this DataArray's data. - ndim- Number of array dimensions. - real- The real part of the array. - shape- Tuple of array dimensions. - size- Number of elements in the array. - sizes- Ordered mapping from dimension names to lengths. - str- alias of - StringAccessor[- DataArray]- values- The array's data converted to numpy.ndarray. - variable- Low level interface to the Variable object for this DataArray. - xindexes- Mapping of - Indexobjects used for label based indexing.