quantile
- UnitsAwareDataArray.quantile(q: ArrayLike, dim: Dims = None, *, method: QuantileMethods = 'linear', keep_attrs: bool | None = None, skipna: bool | None = None, interpolation: QuantileMethods | None = None) Self
- Compute the qth quantile of the data along the specified dimension. - Returns the qth quantiles(s) of the array elements. - Parameters:
- q (float or array-like of float) – Quantile to compute, which must be between 0 and 1 inclusive. 
- dim (str or Iterable of Hashable, optional) – Dimension(s) over which to apply quantile. 
- method (str, default: "linear") – - This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points. The options sorted by their R type as summarized in the H&F paper [1] are: - ”inverted_cdf” 
- ”averaged_inverted_cdf” 
- ”closest_observation” 
- ”interpolated_inverted_cdf” 
- ”hazen” 
- ”weibull” 
- ”linear” (default) 
- ”median_unbiased” 
- ”normal_unbiased” 
 - The first three methods are discontiuous. The following discontinuous variations of the default “linear” (7.) option are also available: - ”lower” 
- ”higher” 
- ”midpoint” 
- ”nearest” 
 - See - numpy.quantile()or [1] for details. The “method” argument was previously called “interpolation”, renamed in accordance with numpy version 1.22.0.
- keep_attrs (bool or None, optional) – If True, the dataset’s attributes (attrs) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. 
- skipna (bool or None, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64). 
 
- Returns:
- quantiles – If q is a single quantile, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the quantile and a quantile dimension is added to the return array. The other dimensions are the dimensions that remain after the reduction of the array. 
- Return type:
- DataArray 
 - See also - numpy.nanquantile,- numpy.quantile,- pandas.Series.quantile,- Dataset.quantile- Examples - >>> da = xr.DataArray( ... data=[[0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]], ... coords={"x": [7, 9], "y": [1, 1.5, 2, 2.5]}, ... dims=("x", "y"), ... ) >>> da.quantile(0) # or da.quantile(0, dim=...) <xarray.DataArray ()> Size: 8B array(0.7) Coordinates: quantile float64 8B 0.0 >>> da.quantile(0, dim="x") <xarray.DataArray (y: 4)> Size: 32B array([0.7, 4.2, 2.6, 1.5]) Coordinates: * y (y) float64 32B 1.0 1.5 2.0 2.5 quantile float64 8B 0.0 >>> da.quantile([0, 0.5, 1]) <xarray.DataArray (quantile: 3)> Size: 24B array([0.7, 3.4, 9.4]) Coordinates: * quantile (quantile) float64 24B 0.0 0.5 1.0 >>> da.quantile([0, 0.5, 1], dim="x") <xarray.DataArray (quantile: 3, y: 4)> Size: 96B array([[0.7 , 4.2 , 2.6 , 1.5 ], [3.6 , 5.75, 6. , 1.7 ], [6.5 , 7.3 , 9.4 , 1.9 ]]) Coordinates: * y (y) float64 32B 1.0 1.5 2.0 2.5 * quantile (quantile) float64 24B 0.0 0.5 1.0 - References