max
- UnitsAwareDataArray.max(dim: Dims = None, *, skipna: bool | None = None, keep_attrs: bool | None = None, **kwargs: Any) Self
- Reduce this DataArray’s data by applying - maxalong some dimension(s).- Parameters:
- dim (str, Iterable of Hashable, "..." or None, default: None) – Name of dimension[s] along which to apply - max. For e.g.- dim="x"or- dim=["x", "y"]. If “…” or None, will reduce over all dimensions.
- skipna (bool or None, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) or - skipna=Truehas not been implemented (object, datetime64 or timedelta64).
- keep_attrs (bool or None, optional) – If True, - attrswill be copied from the original object to the new one. If False, the new object will be returned without attributes.
- **kwargs (Any) – Additional keyword arguments passed on to the appropriate array function for calculating - maxon this object’s data. These could include dask-specific kwargs like- split_every.
 
- Returns:
- reduced – New DataArray with - maxapplied to its data and the indicated dimension(s) removed
- Return type:
- DataArray 
 - See also - numpy.max,- dask.array.max,- Dataset.max- Aggregation
- User guide on reduction or aggregation operations. 
 - Examples - >>> da = xr.DataArray( ... np.array([1, 2, 3, 0, 2, np.nan]), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> da <xarray.DataArray (time: 6)> Size: 48B array([ 1., 2., 3., 0., 2., nan]) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' - >>> da.max() <xarray.DataArray ()> Size: 8B array(3.) - Use - skipnato control whether NaNs are ignored.- >>> da.max(skipna=False) <xarray.DataArray ()> Size: 8B array(nan)