cumulative_integrate
- UnitsAwareDataArray.cumulative_integrate(coord: Hashable | Sequence[Hashable] = None, datetime_unit: DatetimeUnitOptions = None) Self
- Integrate cumulatively along the given coordinate using the trapezoidal rule. - Note - This feature is limited to simple cartesian geometry, i.e. coord must be one dimensional. - The first entry of the cumulative integral is always 0, in order to keep the length of the dimension unchanged between input and output. - Parameters:
- coord (Hashable, or sequence of Hashable) – Coordinate(s) used for the integration. 
- datetime_unit ({'Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', 'ps', 'fs', 'as', None}, optional) – Specify the unit if a datetime coordinate is used. 
 
- Returns:
- integrated 
- Return type:
- DataArray 
 - See also - Dataset.cumulative_integrate- scipy.integrate.cumulative_trapezoid
- corresponding scipy function 
 - Examples - >>> da = xr.DataArray( ... np.arange(12).reshape(4, 3), ... dims=["x", "y"], ... coords={"x": [0, 0.1, 1.1, 1.2]}, ... ) >>> da <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) float64 32B 0.0 0.1 1.1 1.2 Dimensions without coordinates: y >>> >>> da.cumulative_integrate("x") <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[0. , 0. , 0. ], [0.15, 0.25, 0.35], [4.65, 5.75, 6.85], [5.4 , 6.6 , 7.8 ]]) Coordinates: * x (x) float64 32B 0.0 0.1 1.1 1.2 Dimensions without coordinates: y