groupby
- UnitsAwareDataArray.groupby(group: Hashable | DataArray | IndexVariable, squeeze: bool | None = None, restore_coord_dims: bool = False) DataArrayGroupBy
- Returns a DataArrayGroupBy object for performing grouped operations. - Parameters:
- group (Hashable, DataArray or IndexVariable) – Array whose unique values should be used to group this array. If a Hashable, must be the name of a coordinate contained in this dataarray. 
- squeeze (bool, default: True) – If “group” is a dimension of any arrays in this dataset, squeeze controls whether the subarrays have a dimension of length 1 along that dimension or if the dimension is squeezed out. 
- restore_coord_dims (bool, default: False) – If True, also restore the dimension order of multi-dimensional coordinates. 
 
- Returns:
- grouped – A DataArrayGroupBy object patterned after pandas.GroupBy that can be iterated over in the form of (unique_value, grouped_array) pairs. 
- Return type:
- DataArrayGroupBy 
 - Examples - Calculate daily anomalies for daily data: - >>> da = xr.DataArray( ... np.linspace(0, 1826, num=1827), ... coords=[pd.date_range("2000-01-01", "2004-12-31", freq="D")], ... dims="time", ... ) >>> da <xarray.DataArray (time: 1827)> Size: 15kB array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.824e+03, 1.825e+03, 1.826e+03]) Coordinates: * time (time) datetime64[ns] 15kB 2000-01-01 2000-01-02 ... 2004-12-31 >>> da.groupby("time.dayofyear") - da.groupby("time.dayofyear").mean("time") <xarray.DataArray (time: 1827)> Size: 15kB array([-730.8, -730.8, -730.8, ..., 730.2, 730.2, 730.5]) Coordinates: * time (time) datetime64[ns] 15kB 2000-01-01 2000-01-02 ... 2004-12-31 dayofyear (time) int64 15kB 1 2 3 4 5 6 7 8 ... 360 361 362 363 364 365 366 - See also - GroupBy: Group and Bin Data
- Users guide explanation of how to group and bin data. 
- xarray-tutorial:intermediate/01-high-level-computation-patterns
- Tutorial on - Groupby()for windowed computation
- xarray-tutorial:fundamentals/03.2_groupby_with_xarray
- Tutorial on - Groupby()demonstrating reductions, transformation and comparison with- resample()
 - DataArray.groupby_bins Dataset.groupby core.groupby.DataArrayGroupBy DataArray.coarsen pandas.DataFrame.groupby Dataset.resample DataArray.resample