drop_duplicates
- UnitsAwareDataArray.drop_duplicates(dim: Hashable | Iterable[Hashable], *, keep: Literal['first', 'last', False] = 'first') Self
- Returns a new DataArray with duplicate dimension values removed. - Parameters:
- dim (dimension label or labels) – Pass … to drop duplicates along all dimensions. 
- keep ({"first", "last", False}, default: "first") – - Determines which duplicates (if any) to keep. - "first": Drop duplicates except for the first occurrence.
- "last": Drop duplicates except for the last occurrence.
- False : Drop all duplicates. 
 
 
- Return type:
- DataArray 
 - See also - Dataset.drop_duplicates- Examples - >>> da = xr.DataArray( ... np.arange(25).reshape(5, 5), ... dims=("x", "y"), ... coords={"x": np.array([0, 0, 1, 2, 3]), "y": np.array([0, 1, 2, 3, 3])}, ... ) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 40B 0 0 1 2 3 * y (y) int64 40B 0 1 2 3 3 - >>> da.drop_duplicates(dim="x") <xarray.DataArray (x: 4, y: 5)> Size: 160B array([[ 0, 1, 2, 3, 4], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 32B 0 1 2 3 * y (y) int64 40B 0 1 2 3 3 - >>> da.drop_duplicates(dim="x", keep="last") <xarray.DataArray (x: 4, y: 5)> Size: 160B array([[ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 32B 0 1 2 3 * y (y) int64 40B 0 1 2 3 3 - Drop all duplicate dimension values: - >>> da.drop_duplicates(dim=...) <xarray.DataArray (x: 4, y: 4)> Size: 128B array([[ 0, 1, 2, 3], [10, 11, 12, 13], [15, 16, 17, 18], [20, 21, 22, 23]]) Coordinates: * x (x) int64 32B 0 1 2 3 * y (y) int64 32B 0 1 2 3